Many common materials that we ingest, though quite safe in reasonable quantities, become toxic when taken in very large doses. A measure of toxicity is the LD 50 value (Lethal Dose, 50%). It is the quantity of material, expressed in mg of material per kg of subject-body-weight that, if administered to a population of subjects, would cause 50% of the population to die. The LD 50 value for FD&C Red Dye No. 40 is >10,000 mg/kg in rats. Assume that the LD 50 value for humans is the same as for rats. Calculate the number of mg of Allura Red present in an 12 fluid ounce glass of the beverage you used in this lab. Assume that the concentration of Allura Red in the beverage is 0.000034 M. The molar mass of Allura Red is 496.42 grams/mol 1 fl oz = 29.5735 mL

Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Mark S. Cracolice, Ed Peters
Chapter3: Measurement And Chemical Calculations
Section: Chapter Questions
Problem 128E: In Active Example 3-29 you calculated that you would have to work six weeks to earn enough money to...
icon
Related questions
Question
Many common materials that we ingest, though quite safe in reasonable quantities,
become toxic when taken in very large doses. A measure of toxicity is the LD 50 value
(Lethal Dose, 50%). It is the quantity of material, expressed in mg of material per kg of
subject-body-weight that, if administered to a population of subjects, would cause
50% of the population to die. The LD 50 value for FD&C Red Dye No. 40 is >10,000
mg/kg in rats. Assume that the LD 50 value for humans is the same as for rats.
Calculate the number of mg of Allura Red present in an 12 fluid ounce glass of the
beverage you used in this lab. Assume that the concentration of Allura Red in the
beverage is 0.000034 M.
The molar mass of Allura Red is 496.42 grams/mol
1 fl oz = 29.5735 mL
Transcribed Image Text:Many common materials that we ingest, though quite safe in reasonable quantities, become toxic when taken in very large doses. A measure of toxicity is the LD 50 value (Lethal Dose, 50%). It is the quantity of material, expressed in mg of material per kg of subject-body-weight that, if administered to a population of subjects, would cause 50% of the population to die. The LD 50 value for FD&C Red Dye No. 40 is >10,000 mg/kg in rats. Assume that the LD 50 value for humans is the same as for rats. Calculate the number of mg of Allura Red present in an 12 fluid ounce glass of the beverage you used in this lab. Assume that the concentration of Allura Red in the beverage is 0.000034 M. The molar mass of Allura Red is 496.42 grams/mol 1 fl oz = 29.5735 mL
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Tools in Analytical Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Chemistry: An Active Learning Approa…
Introductory Chemistry: An Active Learning Approa…
Chemistry
ISBN:
9781305079250
Author:
Mark S. Cracolice, Ed Peters
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Appl Of Ms Excel In Analytical Chemistry
Appl Of Ms Excel In Analytical Chemistry
Chemistry
ISBN:
9781285686691
Author:
Crouch
Publisher:
Cengage
Fundamentals Of Analytical Chemistry
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:
9781285640686
Author:
Skoog
Publisher:
Cengage
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning