Methanol (CH3OH) is produced in the reaction of carbon dioxide and hydrogen via the reaction and process given below:   CO2+3H2→CH3OH+H2O       The fresh feed to the process contains hydrogen, carbon dioxide, and 0.400 mol% inerts (I). The reactor effluent passes through a condenser that removes essentially all of the methanol and water formed and none of the reactants or inerts. The unreacted reactants and inerts are recycled to the reactor. To avoid buildup of the inerts in the system, a purge stream is withdrawn from the recycle. 100 mol/h of feed to the reactor (not the fresh feed to the process) contains 29.5 mol% CO2, 68.0 mol% H2, and 2.50 mol% inerts. The single-pass conversion of hydrogen is 46.71%. What is the recycle-to-fresh feed ratio?

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Methanol (CH3OH) is produced in the reaction of carbon dioxide and hydrogen via the reaction and process given below:

 

CO2+3H2→CH3OH+H2O

 

 

 

The fresh feed to the process contains hydrogen, carbon dioxide, and 0.400 mol% inerts (I). The reactor effluent passes through a condenser that removes essentially all of the methanol and water formed and none of the reactants or inerts. The unreacted reactants and inerts are recycled to the reactor. To avoid buildup of the inerts in the system, a purge stream is withdrawn from the recycle. 100 mol/h of feed to the reactor (not the fresh feed to the process) contains 29.5 mol% CO2, 68.0 mol% H2, and 2.50 mol% inerts. The single-pass conversion of hydrogen is 46.71%. What is the recycle-to-fresh feed ratio?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Thermodynamic Aspects of Phase Transitions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY