On a circular conduit there are different diameters: diameter D1 = 2 m, changes into D2 = 3 m. The velocity in the entrance profile was measured: v1 = 3 m/s. Calculate the discharge and mean velocity at the outlet profile (see figure below). Determine also type of flow in both conduit profiles (whether the flow is laminar or turbulent) – temperature of water T = 12° C. (use Reynold’s number Re), For laminar flow: Re<2320, For turbulent flow Re>2320, Kinematic viscosity of water of 12°C, v is equal to 1,24 10^-6 m2/s.

Welding: Principles and Applications (MindTap Course List)
8th Edition
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Larry Jeffus
Chapter23: Fabricating Techniques And Practices
Section: Chapter Questions
Problem 13R: What can you do to make parts fit without having to recut or regrind them?
icon
Related questions
Question

On a circular conduit there are different diameters: diameter D1 = 2 m, changes into D2 = 3 m. The velocity in the entrance profile was measured: v1 = 3 m/s. Calculate the discharge and mean velocity at the outlet profile (see figure below). Determine also type of flow in both conduit profiles (whether the flow is laminar or turbulent) – temperature of water T = 12° C. (use Reynold’s number Re), For laminar flow: Re<2320, For turbulent flow Re>2320, Kinematic viscosity of water of 12°C, v is equal to 1,24 10^-6 m2/s.

VD
,
D2
Figure
Transcribed Image Text:VD , D2 Figure
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Welding: Principles and Applications (MindTap Cou…
Welding: Principles and Applications (MindTap Cou…
Mechanical Engineering
ISBN:
9781305494695
Author:
Larry Jeffus
Publisher:
Cengage Learning