Problem. Problem 1. A 280-km, 380-kV, 50-Hz three-phase line has resistance of 0.06 Ohm/km, radius of each conductor of 18.7 mm. At full load, this line delivers 250 MW at 0.95 p.f. lagging and at 350 kV. Using nominal T circuit, find: 7.5 m 4 m 9.0 m 4 m a) Inductance per km of the system.] b) Capacitance per km with respect to neutral. c) Find the values of ABCD matrices of the system. d) The sending-end voltage and current. e) Find values for a) and b) in per-unit values. f) Find the overall voltage drop over the transmission distance of the system. 5 g) Calculate efficiency of the line from the sender to the receiver ends. h) Plot power triangles for the system and analvse power factor of the system.

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter5: Transmission Lines: Steady-state Operation
Section: Chapter Questions
Problem 5.11P: A 40-km, 220-kV, 60-Hz, three-phase overhead transmission line has a per-phase resistance of...
icon
Related questions
Question
Problem. Problem
1.
A 280-km, 380-kV, 50-Hz three-phase line has resistance of 0.06 Ohm/km, radius of
each conductor of 18.7 mm. At full load, this line delivers 250 MW at 0.95 p.f. lagging
and at 350 kV. Using nominal T circuit, find:
7.5 m
4 m
9.0 m
4 m
Oa'-
a) Inductance per km of the system.]
b) Capacitance per km with respect to neutral.
c) Find the values of ABCD matrices of the system.
d) The sending-end voltage and current.
e) Find values for a) and b) in per-unit values.
f) Find the overall voltage drop over the transmission distance of the system. 5
g) Calculate efficiency of the line from the sender to the receiver ends.
h) Plot power triangles for the system and analvse power factor of the system.
Transcribed Image Text:Problem. Problem 1. A 280-km, 380-kV, 50-Hz three-phase line has resistance of 0.06 Ohm/km, radius of each conductor of 18.7 mm. At full load, this line delivers 250 MW at 0.95 p.f. lagging and at 350 kV. Using nominal T circuit, find: 7.5 m 4 m 9.0 m 4 m Oa'- a) Inductance per km of the system.] b) Capacitance per km with respect to neutral. c) Find the values of ABCD matrices of the system. d) The sending-end voltage and current. e) Find values for a) and b) in per-unit values. f) Find the overall voltage drop over the transmission distance of the system. 5 g) Calculate efficiency of the line from the sender to the receiver ends. h) Plot power triangles for the system and analvse power factor of the system.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Capacitor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning