Suppose a gas-filled incandescent light bulb is manufactured so that the gas inside the bulb is at atmospheric pressure when the bulb has a temperature of 20.0°C. (a) Find the gauge pressure, in standard atmospheres, inside such a bulb when it is hot, assuming its average temperature is 60.5°C and neglecting any change in volume due to thermal expansion. (b) The actual final pressure for the light bulb will be less than calculated in part (a) because the glass bulb will expand a small amount. What will the actual final gauge pressure be, in standard atmospheres, assuming the thermal coefficient of volume expansion is 2.7 x 10S/rc?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Can you please help me answer this?

Suppose a gas-filled incandescent light bulb is manufactured so that the gas inside the bulb is
at atmospheric pressure when the bulb has a temperature of 20.0°C.
(a) Find the gauge pressure, in standard atmospheres, inside such a bulb when it is hot,
assuming its average temperature is 60.5°C and neglecting any change in volume due to
thermal expansion.
(b) The actual final pressure for the light bulb will be less than calculated in part (a) because
the glass bulb will expand a small amount. What will the actual final gauge pressure be, in
standard atmospheres, assuming the thermal coefficient of volume expansion is 2.7 x 105/°C?
Transcribed Image Text:Suppose a gas-filled incandescent light bulb is manufactured so that the gas inside the bulb is at atmospheric pressure when the bulb has a temperature of 20.0°C. (a) Find the gauge pressure, in standard atmospheres, inside such a bulb when it is hot, assuming its average temperature is 60.5°C and neglecting any change in volume due to thermal expansion. (b) The actual final pressure for the light bulb will be less than calculated in part (a) because the glass bulb will expand a small amount. What will the actual final gauge pressure be, in standard atmospheres, assuming the thermal coefficient of volume expansion is 2.7 x 105/°C?
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY