The average kinetic energy of the molecules in a gas sample depends only on the temperature, T. However, given the same kinetic energies, a lighter molecule will move faster than a heavier molecule, as shown in the equation for rms speed rms speed = rms speed: 3RT where R = 8.314 J/(mol·K) and M is molar mass in kilograms per mole. Note that a joule is the same as a kilogram-meter squared per second squared (kg-m²/s²). What is the rms speed of N₂ molecules at 497 K? V M rms speed: What is the rms speed of He atoms at 497 K? m/s m/s

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter8: Properties Of Gases
Section: Chapter Questions
Problem 104QRT
icon
Related questions
icon
Concept explainers
Question
The average kinetic energy of the molecules in a gas sample depends only on the temperature, T. However, given the same
kinetic energies, a lighter molecule will move faster than a heavier molecule, as shown in the equation for rms speed
rms speed =
rms speed:
3RT
where R =
8.314 J/(mol·K) and M is molar mass in kilograms per mole. Note that a joule is the same as a kilogram-meter
squared per second squared (kg-m²/s²).
What is the rms speed of N₂ molecules at 497 K?
V M
rms speed:
What is the rms speed of He atoms at 497 K?
m/s
m/s
Transcribed Image Text:The average kinetic energy of the molecules in a gas sample depends only on the temperature, T. However, given the same kinetic energies, a lighter molecule will move faster than a heavier molecule, as shown in the equation for rms speed rms speed = rms speed: 3RT where R = 8.314 J/(mol·K) and M is molar mass in kilograms per mole. Note that a joule is the same as a kilogram-meter squared per second squared (kg-m²/s²). What is the rms speed of N₂ molecules at 497 K? V M rms speed: What is the rms speed of He atoms at 497 K? m/s m/s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Thermochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning