Very far from earth (at R=∞), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force of the earth were to act on it (i.e., neglect the forces from the sun and other solar system objects), the spacecraft would eventually crash into the earth. The mass of the earth is Me and its radius is Re. Neglect air resistance throughout this problem, since the spacecraft is primarily moving through the near vacuum of space. Find the speed se of the spacecraft when it crashes into the earth. Express the speed in terms of Me, Re, and the universal gravitational constant G. Use a conservation-law approach. Specifically, consider the mechanical energy of the spacecraft when it is (a) very far from the earth and (b) at the surface of the earth.

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter7: Hamilton's Principle-lagrangian And Hamiltonian Dynamics
Section: Chapter Questions
Problem 7.11P
icon
Related questions
Question

Very far from earth (at R=∞), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force of the earth were to act on it (i.e., neglect the forces from the sun and other solar system objects), the spacecraft would eventually crash into the earth. The mass of the earth is Me and its radius is Re. Neglect air resistance throughout this problem, since the spacecraft is primarily moving through the near vacuum of space.

Find the speed se of the spacecraft when it crashes into the earth.
Express the speed in terms of Me, Re, and the universal gravitational constant G. Use a conservation-law approach. Specifically, consider the mechanical energy of the spacecraft when it is (a) very far from the earth and (b) at the surface of the earth.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning