Which of the following gives the nearest value for the maximum spring force, in Netwons? a. 1800 N b. 900 N c. 121 N d. 4.123 N

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter14: Vibrations And Waves
Section: Chapter Questions
Problem 1STP
icon
Related questions
icon
Concept explainers
Topic Video
Question

Which of the following gives the nearest value for the maximum spring force, in Netwons?

a. 1800 N

b. 900 N

c. 121 N

d. 4.123 N

Draw Free Body
Diagram of the Block
at Initial Condition
Q1: Calculate the
frictional force from
the Free Body
Diagram
Q2: Find the
acceleration at
descend of block
using Newton's
Second Law
Q3: Find the
velocity of the block
at initial contact with
the spring using
Uniform
Accelerated
Motion
Q4: Find the time it
takes for the initial
contact using
Impulse-Momentum
Q4: Find the time it
takes for the initial
contact using
Uniform
Accelerated
Motion
Start
Q5: Calculate for the
maximum deflection
of the spring using
Work-Energy
Method
Q8: Calculate the
velocity after leaving
the spring using
Work-Energy
Method
Q7: Calculate for the
maximum inclined
distance from the
spring after it leaves
the spring using
Work-Energy
Method
Q6: Calculate the
maximum spring
force using Hooke's
Law (F= kx)
Q10: Calculate the
time it takes to reach
the maximum
distance after it
leaves the spring
using
Impulse-Momentun
Q7: Calculate for the
maximum inclined
distance from the
spring after it leaves
the spring using
Uniform Accelerated
Motion
Q10: Calculate the
time it takes to reach
the maximum
distance after it
leaves the spring
using Uniform
Accelerated Motion
Draw the
Free Body
Diagram of
the Block
after leaving
the spring
Q9: Find the
acceleration after
leaving the spring of
block using
Newton's Second
Law
Transcribed Image Text:Draw Free Body Diagram of the Block at Initial Condition Q1: Calculate the frictional force from the Free Body Diagram Q2: Find the acceleration at descend of block using Newton's Second Law Q3: Find the velocity of the block at initial contact with the spring using Uniform Accelerated Motion Q4: Find the time it takes for the initial contact using Impulse-Momentum Q4: Find the time it takes for the initial contact using Uniform Accelerated Motion Start Q5: Calculate for the maximum deflection of the spring using Work-Energy Method Q8: Calculate the velocity after leaving the spring using Work-Energy Method Q7: Calculate for the maximum inclined distance from the spring after it leaves the spring using Work-Energy Method Q6: Calculate the maximum spring force using Hooke's Law (F= kx) Q10: Calculate the time it takes to reach the maximum distance after it leaves the spring using Impulse-Momentun Q7: Calculate for the maximum inclined distance from the spring after it leaves the spring using Uniform Accelerated Motion Q10: Calculate the time it takes to reach the maximum distance after it leaves the spring using Uniform Accelerated Motion Draw the Free Body Diagram of the Block after leaving the spring Q9: Find the acceleration after leaving the spring of block using Newton's Second Law
An 8-kg block slides 150mm from rest down the 25-degree plane. The spring has a value of k = 1800N/m. The coefficient of friction is 0.20.
8 kg
7777777
150 mm
25°
Transcribed Image Text:An 8-kg block slides 150mm from rest down the 25-degree plane. The spring has a value of k = 1800N/m. The coefficient of friction is 0.20. 8 kg 7777777 150 mm 25°
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning