ENPE_381_Set-1-2010-Solution

pdf

School

University of Toronto *

*We aren’t endorsed by this school

Course

381

Subject

Chemistry

Date

Dec 6, 2023

Type

pdf

Pages

6

Report

Uploaded by ProfIbexMaster883

Petroleum System Engineering Faculty of Engineering University of Regina Natural Gas Engineering, ENPE 381 Problem Set # 1 Due : May 10, 2010 1. A natural gas has the following composition: Component C 1 C 2 C 3 i-C 4 n-C 4 i-C 5 n-C 5 C 6 C 7 + H 2 S CO 2 N 2 Mole % 74.62 8.99 5.11 1.03 1.69 0.69 0.76 0.95 3.34 0 2.49 0.16 C 7 + molecular weight = 126 lbm/lbm-mol, C 7 + gravity = 0.772 a. The average molecular weight, M a , of the gas mixture. Components Mole.% Yi Mole.% Yi Mi Mi yi hydrogen sulfide 0.00 0.00 34.08 0.00 Carbon Dioxide 2.49 2.49 44.01 1.10 Nitrogen 0.16 0.16 28.01 0.04 Methane 74.62 74.75 16.04 11.99 Ethane 8.99 9.01 30.07 2.71 Propane 5.11 5.12 44.10 2.26 i-butane 1.03 1.03 58.12 0.60 n-butane 1.69 1.69 58.12 0.98 i-pentane 0.69 0.69 72.15 0.50 n-pentane 0.76 0.76 72.15 0.55 hexane 0.95 0.95 86.18 0.82 hepatane plus 3.34 3.35 126.00 4.22 99.83 100.00 25.77 b. The specific gravity, g γ , of the gas mixture. Gas Sp.gr.= 0.8897311
c. The pseudocritical pressure, P pc , and the pseudocritical temperature, T pc , using the calculated gas gravity. d. The pseudocritical properties of the C 7+ fraction. TbC7+= 759.74048 TpcC7+= 1089.0443 PpcC7+= 388.08173 e. The pseudocritical pressure, P pc , and the pseudocritical temperature, T pc , using the simple mixing rules, Critical Critical Composition Composition Components pressure, psia temp., deg R (mole fraction) (mole fraction) P c x y i T c x y i C 1 668 343 0.7462 0.7475 499.31 256.38 C 2 708 550 0.0899 0.0901 63.7576 49.529 C 3 616 666 0.0511 0.0512 31.5312 34.091 nC 4 551 765 0.0169 0.0169 9.32776 12.951 iC 4 529 735 0.0103 0.0103 5.45798 7.5834 nC 5 489 845 0.0076 0.0076 3.72273 6.4329 iC 5 490 829 0.0069 0.0069 3.38676 5.7298 nC 6 437 913 0.0095 0.0095 4.15857 8.6883 nc 7+ 388.08173 1089.0443 0.0334 0.0335 12.984 36.436 nC 8 361 1024 0 0.0000 0 0 nC 9 332 1070 0 0.0000 0 0 nC 10 304 1112 0 0.0000 0 0 CO 2 1071 548 0.0249 0.0249 26.7133 13.668 H 2 S 1306 672 0.0000 0.0000 0 0 N 2 493 227 0.0016 0.0016 0.79014 0.3638 Ma = 0.9983 1.0000 661.14 431.86 γ = P pc T pc
f. The pseudocritical pressure, P pc , and the pseudocritical temperature, T pc , using Stewart et al mixing rules. J= 0.66941752 K= 17.2973624 Tpc (R ) 447.634611 Ppc (psia) 668.1946824 Z @ (300F, 3758.6psia) 0.904258825 Mw 25.76666273 Gas Gravity 0.889425707 g. Correct the pseudocritical pressure, P pc , and the pseudocritical temperature, T pc obtained in part f. ε 4.003 Correctet P pc and T pc 655.013 427.85 h. The pseudocritical pressure, P pc , and the pseudocritical temperature, T pc , using McCain’s method. Tpc (R ) 443.9354457 Ppc (psia) 634.9397636 Z @ (180F, 1000psia) 0.829005499 Mw 25.82443454 Gas Gravity 0.891419901 i. Use the results of part h to build a table of the following gas properties at a temperature of 249 o and pressure of 500, 1000, 1400, 2000, 2500, and 3000 psia: z factor, gas density, ρ g , and gas formation volume factor, B g .
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
p T z Bg ρ g 500 249 0.93855 0.03762 1.80425 1000 249 0.88450 0.01773 3.82905 1400 249 0.85078 0.01218 5.57310 2000 249 0.82317 0.00825 5.57580 2500 249 0.82273 0.00660 10.29124 3000 249 0.83925 0.00561 12.10646 j. The gas compressibility, c g , and gas viscosity, μ g at 2000 psia and 249 o F. Lee-Gonzalez-Eakin recommended for use since this is a SWEET gas K = 132.61 ρ g = 5.5758 lb/ft 3 X = 5.15 Y = 1.37 μ g = 0.0160 cp 2. A cylinder fitted with leak-proof piston and calibrated so that the volume within the cylinder can be read from a scale for any position of the piston. The cylinder is immersed in a constant temperature bath maintained at 160 o F. About 45,000 cm 3 of gas measured at 14.7 psia and 60 o F , is charged into the cylinder. The volume is decreased in the steps indicated below, and the corresponding pressures are read with a dead-weight tester after temperature equilibrium is reached. Volume ( cm 3 ) Pressure (psia) 2529 300 764 750 453 1500 265 2500 180 4000 156.5 5000 142.2 6000
a. Calculate and place in tabular form the z-factor and the ideal volume that the initial 45,000 cm 3 occupied at 60 o F and at each pressure. b. Calculate the gas formation volume factor, B g at each pressure in ft 3 /scf c. Plot the z-factor and the value of B g vs. pressure on the same graph. V (cc) P (psia) Bg cf/scf z V (cc) ideal 2529.0 300 0.056 0.961949 2629.038 964.0 750 0.021 0.916685 1051.615 453.0 1500 0.010 0.861532 525.808 265.0 2500 0.006 0.839978 315.485 180.0 4000 0.004 0.912881 197.178 156.5 5000 0.003 0.992124 157.742 142.2 6000 0.003 1.081764 131.452 3. A gas condensate well produced with GOR of 4500 scf/STB at the primary separator. Condensate flow rate and cumulative production are 45 STB/D, and 75000 STB. The specific gravity of the separator liquid is 0.7 and Molecular wt. of C7+ is 125. The composition of liquid and vapor phase are given in the following Table. Calculate the reservoir fluid’s composition and wet gas flow rate and cumulative production.
Components xi (liq. M. Frac.) yi (Gas M. Frac.) Methane 0.0100 0.5500 Ethane 0.0200 0.2500 Propane 0.0300 0.1000 n-butane 0.0400 0.0400 n-pentane 0.1000 0.0300 hexane 0.4000 0.0200 heptane plus 0.4000 0.0100 Total 1.0000 1.0000 Components xi (liq. M. Frac.) yi (Gas M. Frac.) Moles W. stream Norm. Mi Xi Mi Methane 0.0100 0.5500 6.532 0.454 16.04 0.16 Ethane 0.0200 0.2500 3.009 0.209 30.07 0.60 Propane 0.0300 0.1000 1.260 0.088 44.10 1.32 n-butane 0.0400 0.0400 0.575 0.040 58.12 2.32 n-pentane 0.1000 0.0300 0.610 0.042 72.15 7.22 hexane 0.4000 0.0200 1.257 0.087 86.18 34.47 hepatane plus 0.4000 0.0100 1.139 0.079 125.00 50.00 1.0000 1.0000 14.382 1.000 96.10 Moles in 1STB 2.5522 moles in 4500 scf 11.8297 total moles = 14.3818 Liquid flow rate = 114.8475 Vap eq of liquid = 43722.4403 dry gas flow rate = 202500.0000 Total = 246222.4403
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help