HW4
.docx
keyboard_arrow_up
School
Western Michigan University *
*We aren’t endorsed by this school
Course
6100
Subject
Industrial Engineering
Date
Feb 20, 2024
Type
docx
Pages
14
Uploaded by MasterWaterBuffalo3592
Q 11
. From the information of question:
Let xij = units of component i purchased from supplier j
Min 12x11 + 13x12 + 14x13 + 10x21 + 11x22 + 10x23
S.t.
x11 + x12 + x13 = 1000
x21 + x22 + x23 = 800
x11 + x21 ≤ 600
x12 + x22 ≤ 1000
x13 + x23 ≤ 800
x11, x12, x13, x21, x22, x23 ≥ 0
By Lingo program:
Global optimal solution found.
Objective value: 20400.00
Infeasibilities: 0.000000
Total solver iterations: 4
Elapsed runtime seconds: 14.29
Model Class: LP
Total variables: 6
Nonlinear variables: 0
Integer variables: 0
Total constraints: 6
Nonlinear constraints: 0
Total nonzeros: 18
Nonlinear nonzeros: 0
Variable Value Reduced Cost
X11 600.0000 0.000000
X12 400.0000 0.000000
X13 0.000000 1.000000
X21 0.000000 1.000000
X22 0.000000 1.000000
X23 800.0000 0.000000
Row Slack or Surplus Dual Price
1 20400.00 -1.000000
2 0.000000 -13.00000
3 0.000000 -10.00000
4 0.000000 1.000000
5 600.0000 0.000000
6 0.000000 0.000000
1
2
3
Component 1
600
400
0
Component 2
0
0
800
Purchase Cost = $20,400
Q 17
a). from the information of question: Min 38FM + 51FP + 11.5SM + 15SP + 6.5TM + 7.5TP S.t.
3.5FM + 1.3SM + 0.8TM ≤
21,000=350*60
2.2FM + 1.7SM ≤ 25,200=420*60
3.1FM + 2.6SM + 1.7TM ≤
40,800=680*60
FM + FP ≥ 5,000
SM + SP ≥ 10,000
TM + TP ≥ 5,000
FM, FP, SM, SP, TM, TP ≥ 0.
By Lingo program:
Global optimal solution found.
Objective value: 368076.9
Infeasibilities: 0.000000
Total solver iterations: 6
Elapsed runtime seconds: 0.13
Model Class: LP
Total variables: 6
Nonlinear variables: 0
Integer variables: 0
Total constraints: 7
Nonlinear constraints: 0
Total nonzeros: 20
Nonlinear nonzeros: 0
Variable Value Reduced Cost
FM 5000.000 0.000000
FP 0.000000 3.576923
SM 2692.308 0.000000
SP 7307.692 0.000000
TM 0.000000 1.153846
TP 5000.000 0.000000
Row Slack or Surplus Dual Price
1 368076.9 -1.000000
2 0.000000 2.692308
3 9623.077 0.000000
4 18300.00 0.000000
5 0.000000 -47.42308
6 0.000000 -15.00000
7 0.000000 -7.500000
FM = number of frames manufactured
FP = number of frames purchased
SM = number of supports manufactured
SP = number of supports purchased
TM = number of straps manufactured
TP = number of straps purchased
Manufacture
Purchase
Frames
5000
0
Support
2692
7308
Strap
0
5000
b) Total Cost = 368,076.91$.
c) Subtract values of slack variables from minutes available to determine minutes used. Divide by 60 to determine hours of production time used.
Constraint
1
Cutting
Slack = 0 350 hours used
2
Milling
(25200 - 9623) / 60 = 259.62 hours
3
Shaping
(40800 - 18300) / 60 = 375 hours
d) Nothing, there are already more hours available than are being used.
e) Yes. The current purchase price is $51.00 and the reduced cost of 3.577 indicates that for a purchase price below $47.423 the solution may improve. Resolving with the coefficient of FP = 45 shows that 2714 frames should be purchased.
The optimal solution is as follows:
OPTIMAL SOLUTION
Objective Function Value = 361500.000
Variable Value Reduced Costs
-------------- --------------- ------------------
FM 2285.714 0.000
FP 2714.286 0.000
SM 10000.000 0.000
SP 0.000 0.900
TM 0.000 0.600
TP 5000.000 0.000By Lingo program
Constraint Slack/Surplus Dual Prices
-------------- --------------- ------------------
1 0.000 2.000
2 3171.429 0.000
3 7714.286 0.000
4 0.000 -45.000
5 0.000 -14.100
6 0.000 -7.500
Q 21
Decision variables: Regular
Model
Month 1
Month 2
Bookshelf
B1R
B2R
Floor
F1R
F2R
Decision variables: Overtime
Model
Month 1
Month 2
Bookshelf
B1O
B2O
Floor
F1O
F2O
Labor costs per unit
Model
Regular $
Overtime $
Bookshelf
.7 (22) = 15.40
.7 (33) = 23.10
Floor 1(22) = 22 1 (33) = 33
Linear Programming Applications in Marketing, Finance and Operations Management
IB = Month 1 ending inventory for bookshelf units.
IF = Month 1 ending inventory for floor model.
Objective function
Min 15.40 B1R + 15.40 B2R + 22 F1R + 22 F2R + 23.10 B1O + 23.10 B2O + 33 F1O + 33 F2O + 10 B1R + 10 B2R + 12 F1R + 12 F2R + 10 B1O + 10 B2O + 12 F1O + 12 F2O + 5 IB + 5 IF
Or
(15.4+10) (22+12) (23.10+10) (33+12)
Min
25.40 B1R + 25.40 B2R + 34 F1R + 34 F2R + 33.10 B1O + 33.10 B2O + 45 F1O + 45 F2O + 5 IB + 5 IF
s.t.
.7 B1R + 1 F1R ≤ 2400 Regular time: month 1
.7 B2R + 1 F2R ≤ 2400 Regular time: month 2
.7B1O + 1 F1O ≤ 1000 Overtime: month 1
.7B2O + 1 F2O ≤ 1000 Overtime: month 2
B1R + B1O - IB = 2100 Bookshelf: month 1
IB + B2R + B2O = 1200 Bookshelf: month 2
F1R + F1O - IF = 1500 Floor: month 1
IF + F2R + F2O = 2600 Floor: month 2
Global optimal solution found.
Objective value: 241130.0
Infeasibilities: 0.000000
Total solver iterations: 8
Elapsed runtime seconds: 0.20
Model Class: LP
Total variables: 10
Nonlinear variables: 0
Integer variables: 0
Total constraints: 9
Nonlinear constraints: 0
Total nonzeros: 30
Nonlinear nonzeros: 0
Variable Value Reduced Cost
B1R 2100.000 0.000000
B2R 1200.000 0.000000
F1R 930.0000 0.000000
F2R 1560.000 0.000000
B1O 0.000000 0.000000
B2O 0.000000 0.000000
F1O 610.0000 0.000000
F2O 1000.000 0.000000
B1 0.000000 1.500000
F1 40.00000 0.000000
Row Slack or Surplus Dual Price
1 241130.0 -1.000000
2 0.000000 11.00000
3 0.000000 16.00000
4 390.0000 0.000000
5 0.000000 5.000000
6 0.000000 -33.10000
7 0.000000 -36.60000
8 0.000000 -45.00000
9 0.000000 -50.00000
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help