Exploration12

.pdf

School

Georgia Institute Of Technology *

*We aren’t endorsed by this school

Course

1554

Subject

Industrial Engineering

Date

Dec 6, 2023

Type

pdf

Pages

2

Uploaded by PresidentMoon12744

Report
clc format shortG Problem 25: Compute PageRank and find the smallest k for convergence Define the Google matrix G for Problem 25 G1 = 0.85 * [ 0 0 1/5 1 0; 1/3 0 1/5 0 1/2; 1/3 1/2 1/5 0 0; 1/3 0 1/5 0 1/2; 0 1/2 1/5 0 0 ] + 0.15 * ones(5, 5) / 5; % Compute PageRank for Problem 25 using the power method pageRank1 = ones(5, 1) / 5; % Initial guess for the PageRank vector tolerance = 1e-4; % convergence tolerance delta = inf; % change in PageRank vector k = 0; % iteration counter while delta > tolerance pageRank1_new = G1 * pageRank1; delta = norm(pageRank1_new - pageRank1); pageRank1 = pageRank1_new; k = k + 1; end % Display PageRank values disp( 'PageRank for Problem 25:' ); disp(pageRank1); % Display the smallest k for convergence disp([ 'The smallest k for convergence to 4 significant digits in Problem 25 is: ' num2str(k)]); PageRank for Problem 25: 0.23527 0.19789 0.21779 0.19789 0.15115 The smallest k for convergence to 4 significant digits in Problem 25 is: 14 Problem 26: Compute PageRank and find the smallest k for convergence Define the Google matrix G for Problem 26 1
G2 = 0.85 * [ 1/6 0 1/6 0 1/4 1/2; 1/6 0 1/6 1/2 1/4 0; 1/6 0 1/6 1/2 0 0; 1/6 1/2 1/6 0 1/4 1/2; 1/6 1/2 1/6 0 0 0; 1/6 0 1/6 0 1/4 0 ] + 0.15 * ones(6, 6) / 6; % Compute PageRank for Problem 26 using the power method pageRank2 = ones(6, 1) / 6; % Initial guess for the PageRank vector delta = inf; % change in PageRank vector k = 0; % iteration counter while delta > tolerance pageRank2_new = G2 * pageRank2; delta = norm(pageRank2_new - pageRank2); pageRank2 = pageRank2_new; k = k + 1; end % Display PageRank values disp( 'PageRank for Problem 26:' ); disp(pageRank2); % Display the smallest k for convergence disp([ 'The smallest k for convergence to 4 significant digits in Problem 26 is: ' num2str(k)]); PageRank for Problem 26: 0.14552 0.2001 0.1673 0.23058 0.15438 0.10212 The smallest k for convergence to 4 significant digits in Problem 26 is: 11 Answer Questions: Q1: Which model (linear, quadratic, cubic) would best fit the PageRank data? Ans1: The PageRank does not typically fit into a linear, quadratic, or cubic model as it represents a steady-state distribution of a Markov process. It is not modeled based on a polynomial regression but on a stochastic process. % Q2: What does the value of the error ||G^k - Pi|| represent in the context of PageRank? % Ans2: The error represents the difference between the computed PageRank vector at iteration k and the true steady-state distribution (Pi). A smaller error indicates convergence to the steady state. Published with MATLAB® R2023b 2
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help