Supplement

.Rmd

School

Wake Tech *

*We aren’t endorsed by this school

Course

320

Subject

Industrial Engineering

Date

Dec 6, 2023

Type

Rmd

Pages

3

Uploaded by MateScience9335

Report
--- title: "Supplement for Modeling 2" author: "Mario Giacomazzo" date: "`r format(Sys.time(), '%B %d, %Y')`" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE,warning=F) options(scipen=999) library(tidyverse) #Essential Functions library(modelr) #Helpful Functions in Modeling DATA=read_csv("AirWaterTemp.csv",col_types=cols()) #River Data ``` # Introduction Today, we will work with daily water temperature and air temperature data observed for `r length(unique(DATA$L))` rivers in Spain. The goal of this tutorial is to identify the best model for predicting the maximum water temperature given the maximum air temperature. In the preview below, `W` represents the daily maximum water temperature and `A` represents the daily maximum air temperature. The data contains almost a full year of data for each of the `r length(unique(DATA$L))` different rivers. ```{r,echo=F} head(DATA) ``` #Part 1: Examining the Relationship ##Chunk 1: Overall Relationship ```{r,echo=F,eval=T,message=F} ggplot(data=DATA) + geom_point(aes(x=A,y=W),alpha=0.3)+ geom_smooth(aes(x=A,y=W)) + theme_minimal() ``` ##Chunk 2: Location-Specific Relationship ```{r,echo=F,eval=F} Location = 103 DATA %>% filter(L==Location) %>% ggplot()+ geom_point(aes(x=A,y=W),alpha=0.3)+ geom_smooth(aes(x=A,y=W)) + theme_minimal() ``` ##Chunk 3: Split Data into Train and Test Sets ```{r,eval=F} set.seed(216) TEST.LOCATIONS=sample(x=unique(DATA$L),size=3,replace=F)
TRAIN = anti_join(DATA,tibble(L=TEST.LOCATIONS),by="L") TEST = semi_join(DATA,tibble(L=TEST.LOCATIONS),by="L") ``` ##Chunk 4: Plots of Relationship for Train and Test Data ```{r,echo=F,eval=F} WAPLOT2.func=function(DATA){ ggplot(data=DATA)+ geom_point(aes(x=A,y=W),alpha=0.3)+ geom_smooth(aes(x=A,y=W)) + theme_minimal() } WAPLOT2.func(TRAIN) WAPLOT2.func(TEST) ``` #Part 2: Linear Regression Model ##Chunk 1: Fitting Linear Model to Train Data ```{r,echo=F,eval=F} linmod=lm(W~A,data=TRAIN) summary(linmod) ``` ##Chunk 2: Getting Predictions from Linear Model ```{r,eval=F} TRAIN2 = TRAIN %>% add_predictions(linmod,var="linpred") TEST2 = TEST %>% add_predictions(linmod,var="linpred") ``` ##Chunk 3: Getting Residuals from Linear Model ```{r,eval=F} TRAIN3 = TRAIN2 %>% add_residuals(linmod,var="linres") TEST3 = TEST2 %>% add_residuals(linmod,var="linres") ``` #Part 3: Polynomial Regression Model ##Chunk 1: Fitting Polynomial Regression Models ```{r,eval=F} poly2mod=lm(W~A+I(A^2),data=TRAIN) poly3mod=lm(W~A+I(A^2)+I(A^3),data=TRAIN) poly4mod=lm(W~A+I(A^2)+I(A^3)+I(A^4),data=TRAIN) anova(linmod,poly2mod,poly3mod,poly4mod,test="Chisq") ``` ##Chunk 2: Getting Predictions from Polynomial Models ```{r,eval=F} TRAIN4 =TRAIN3 %>% add_predictions(poly2mod,var="poly2pred") %>% add_predictions(poly3mod,var="poly3pred") %>% add_predictions(poly4mod,var="poly4pred") TEST4 =TEST3 %>% add_predictions(poly2mod,var="poly2pred") %>% add_predictions(poly3mod,var="poly3pred") %>% add_predictions(poly4mod,var="poly4pred")
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help