Assignment 4

.pdf

School

Northeastern University *

*We aren’t endorsed by this school

Course

6400

Subject

Information Systems

Date

Apr 3, 2024

Type

pdf

Pages

5

Uploaded by ColonelMosquitoMaster1017

Report
In [1]: Question 1: In [5]: In [6]: Question 2 In [23]: In [28]: Name Age City 0 Alice 25 New York 1 Bob 30 San Francisco 2 Charlie 22 Los Angeles 3 David 35 Chicago 4 Eve 28 Miami Out[23]: Name Age City 0 Alice 25 New York 1 Bob 30 San Francisco 2 Charlie 22 Los Angeles Out[28]: Name 0 Alice 1 Bob 2 Charlie 3 David 4 Eve import pandas as pd # 1 data = { 'Name' : [ 'Alice' , 'Bob' , 'Charlie' , 'David' , 'Eve' ], 'Age' : [ 25 , 30 , 22 , 35 , 28 ], 'City' : [ 'New York' , 'San Francisco' , 'Los Angeles' , 'Chicago df = pd.DataFrame(data) # 2 print (df) # 1 df.iloc[: 3 ,] # 2 df[[ "Name" ]] Assignment 4 - Jupyter Notebook http://localhost:8888/notebooks/Documents/Data%20Analytics%20Eng... 1 of 5 9/29/23, 8:42 PM
In [32]: In [39]: In [38]: Question 3 In [55]: Out[32]: Age 2 22 Out[39]: Name David Age 35 City Chicago Name: 3, dtype: object Out[38]: Name 1 Bob Out[55]: Category Product Price Quantity 0 Electronics Laptop 1200 3 1 Clothing T-Shirt 20 5 2 Electronics Smartphone 800 2 3 Clothing Jeans 50 4 4 Electronics Tablet 300 1 # 3 df.loc[df.Name == "Charlie" ,[ "Age" ]] # 4 df.loc[df[ "Age" ].idxmax()] # 5 df.loc[df[ "City" ] == "San Francisco" ,[ "Name" ]] # 1 sales_data = { 'Category' : [ 'Electronics' , 'Clothing' , 'Electronics' , 'Product' : [ 'Laptop' , 'T-Shirt' , 'Smartphone' , 'Jeans' , 'Price' : [ 1200 , 20 , 800 , 50 , 300 ], 'Quantity' : [ 3 , 5 , 2 , 4 , 1 ]} sales_df = pd.DataFrame(sales_data) sales_df Assignment 4 - Jupyter Notebook http://localhost:8888/notebooks/Documents/Data%20Analytics%20Eng... 2 of 5 9/29/23, 8:42 PM
In [60]: In [87]: In [63]: Total Sales for Clothing: 300 Total Sales for Electronics: 5500 Average Price for Jeans: 50.0 Average Price for Laptop: 1200.0 Average Price for Smartphone: 800.0 Average Price for T-Shirt: 20.0 Average Price for Tablet: 300.0 Total Sales: 5800 # 2 group_category = sales_df.groupby( "Category" ) groups_dictionary = group_category.groups for i in groups_dictionary: result = group_category.get_group(i) total_sales = 0 for j in groups_dictionary[i]: total_sales = total_sales + (result.loc[j, "Price" ] * result.loc[ print ( "Total Sales for {}: {}" .format(i,total_sales)) # 3 group_product = sales_df.groupby( "Product" ) groups_product = group_product.groups for i in groups_product: result = group_product.get_group(i) average_price = 0 for j in groups_product[i]: average_price = average_price + (result.loc[j, "Price" ]) average_price = average_price / ( len (result)) print ( "Average Price for {}: {}" .format(i,average_price)) # 4 total_sales = 0 for i in range ( len (sales_df)): total_sales = total_sales + (sales_df.loc[i, "Price" ] * sales_df.loc[ print ( "Total Sales: {}" .format(total_sales)) Assignment 4 - Jupyter Notebook http://localhost:8888/notebooks/Documents/Data%20Analytics%20Eng... 3 of 5 9/29/23, 8:42 PM
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help