M1C_Sample_Exam_2_Answers
.pdf
keyboard_arrow_up
School
De Anza College *
*We aren’t endorsed by this school
Course
1C
Subject
Mathematics
Date
Apr 3, 2024
Type
Pages
10
Uploaded by DeaconTeam13405
MATH 1C: SAMPLE EXAM 2
c Jeffrey A. Anderson
ANSWER KEY
True/False
(15 points: 3 points each) For the problems below, circle T if the answer is true and circle F is the
answer is false. After you’ve chosen your answer, mark the appropriate space on your Scantron
form. Notice that letter A corresponds to true while letter B corresponds to false.
1.
T
F
If
lim
n
→∞
a
n
= 0, then
∞
∑
n
=1
a
n
converges.
2.
T
F
The series
∞
∑
n
=1
3
ne
-
n
2
diverges
3.
T
F
If
f
has a local minimum at point (
a, b
)
∈
R
2
, then
D
u
f
(
a,b
)
= 0
for any unit vector
u
∈
R
2
.
4.
T
F
If
a
n
>
0 and
∞
∑
n
=1
a
n
converges, then
∞
∑
n
=1
(
-
1)
n
a
n
converges.
5.
T
F
Suppose
f
:
R
3
→
R
. If
∇
f
= 0 at a point
x
∈
R
3
, then
f
has a local extreme value
at point
x
.
Multiple Choice
(45 points: 3 points each) For the problems below, circle the correct response for each question.
After you’ve chosen your answer, mark your answer on your Scantron form.
6. Let
z
= sin(
x
·
y
) and let
x
=
x
(
t
) and
y
=
y
(
t
) be functions of
t
. Suppose
x
(1) = 0
,
y
(1) = 1
,
x
0
(1) = 2
,
y
0
(1) = 3
.
Find
dz
dt
when
t
= 1.
A. 1
B.
2
C. 3
D. 4
E. 5
7. The series
∞
∑
n
=0
r
n
converges if and only if:
A.
-
1
< r <
1
B.
-
1
≤
r
≤
1
C.
-
1
≤
r <
1
D.
-
1
< r
≤
1
E.
r <
1
8. Find the direction of maximum increase of the function
f
(
x, y, z
) =
x e
-
y
+ 3
z
at the point (1
,
0
,
4)
.
A.
-
1
-
1
3
B.
1
-
1
3
C.
-
1
3
3
D.
-
1
-
3
3
E.
1
1
3
9. Which of the following series converge?
1)
∞
X
n
=1
1
n
2)
∞
X
n
=1
(
-
1)
n
·
n
ln(
n
)
3)
∞
X
n
=1
(
-
1)
n
n
A. 1
B. 2
C.
3
D. 2
,
3
E. None
10. Find the limit of the sequence
a
n
= 2 +
-
4
5
n
:
A.
2
B.
6
5
C.
-
4
5
D.
-
2
E.
4
5
Math 1C: Sample Exam 2
c Jeffrey A. Anderson
Page 2 of 10
11. Find the shortest distance from the origin to the surface
z
2
= 2
xy
+ 2
A.
1
√
2
B.
√
2
C.
1
2
D. 2
E. 1
12. The series
∞
∑
n
=1
1
n
α
converges if and only if
A.
1
< α
B.
α <
1
C.
-
1
< α <
1
D.
α
≥
1
E.
-
1
< α
13. Find the minimum value of the function
f
(
x, y
) =
x y
subject to the constraint that
x
2
+
y
2
= 2:
A. 1
B. 2
C.
-
1
D.
3
2
E.
-
3
2
14. Find the values of
x
for which the series
∞
∑
n
=1
(
x
-
1)
n
:
A.
-
2
< x <
0
B. 0
< x
≤
2
C.
0
< x <
2
D. 0
≤
x
≤
2
E.
-
2
≤
x <
0
15. Find the directional derivative of the function
f
(
x, y
) =
y
2
·
ln(
x
)
at the point (1
,
2) in the direction of the vector (3
,
4) = 3
i
+ 4
j
:
A.
5
16
B. 12
C.
5
12
D.
16
5
E.
12
5
Math 1C: Sample Exam 2
c Jeffrey A. Anderson
Page 3 of 10
16. Find an equation of the tangent plane to the surface
√
x
+
√
y
+
√
z
= 4 at the point (4
,
1
,
1)
.
A. 2
x
+
y
-
z
= 1
B.
x
+ 2
y
+ 2
z
= 8
C.
x
-
2
y
+ 4
z
= 0
D.
x
+
y
+
z
= 6
E. 2
x
+
y
+
z
= 10
17. Which of the following series converge?
1)
∞
X
n
=1
3
2
n
2
3
n
2)
∞
X
n
=1
1
(
n
+ 1)
3
3)
∞
X
n
=1
n
+ 1
√
n
3
+ 2
A. None
B. 1
C.
2
D. 3
E. 2
,
3
18. Determine how many critical points the function
f
(
x, y
) =
x y
-
x
2
y
-
x y
2
has:
A. 1
B. 2
C. 3
D.
4
E. 5
19. How many terms of the alternating series
∞
X
n
=1
(
-
1)
n
+1
n
-
2
must we add in order to be sure that the partial sum
s
n
is within 0
.
0001 of the sum
s
.
A. 10
B. 300
C. 30
D.
100
E. 1000
20. Let
f
(
x, y
) =
x
y
+
y
x
. Find the gradient vector
∇
f
:
A.
2
y
2
x
B.
x
y
C.
1
y
-
y
x
2
1
x
-
x
y
2
D.
-
y/x
2
-
x/y
2
E.
y
x
Math 1C: Sample Exam 2
c Jeffrey A. Anderson
Page 4 of 10
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help