MGMT 305 Assignment 3 Gabriel Chang
.pdf
keyboard_arrow_up
School
Purdue University *
*We aren’t endorsed by this school
Course
305
Subject
Statistics
Date
Jan 9, 2024
Type
Pages
18
Uploaded by BailiffTurtle4356
Chapter 16
Exercise 1
A.
Regression Statistics
Multiple R
0.794631
6
R Square
0.631439
37
Adjusted R
Square
0.539299
22
Standard Error
7.269276
44
Observations
6
ANOVA
df
SS
MS
F
Significanc
e F
Regression
1
362.13048
362.1304
8
6.853031
23
0.0589334
4
Residual
4
211.36952
52.84238
Total
5
573.5
Coefficie
nts
Standard
Error
t Stat
P-value
Lower 95%
Upper
95%
Lower
95.0%
Upper
95.0%
Intercept
-6.77453
03
14.1709475
-0.47805
77
0.657562
78
-46.119388
32.57032
75
-46.11938
8
32.570327
5
x
1.229645
09
0.46971932
2.617829
49
0.058933
44
-0.0745048
2.533795
01
-0.074504
8
2.5337950
1
Regression Equation:
Y = -6.7745 + 1.2296x
B.
H0: There is no significant relationship between X & Y
Ha: There is a significant relationship between X & Y
P-value = 0.0589 > alpha = 0.05
Do not reject H0 and conclude that that there is no significant relationship between X & Y.
C.
Scatterplot suggests that the data is positively correlated
D.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.97201226
R Square
0.94480783
Adjusted R Square 0.90801305
Standard Error
3.24821546
Observations
6
ANOVA
df
SS
MS
F
Significance F
Regression
2
541.847289
270.923644 25.6777668 0.01296631
Residual
3
31.652711
10.5509037
Total
5
573.5
Coefficients Standard Error
t Stat
P-value
Lower 95%
Upper 95% Lower 95.0% Upper 95.0%
Intercept
-168.88484
39.7861933
-4.2448103
0.02394868 -295.50227
-42.267418
-295.50227
-42.267418
x
12.1870135 2.66323606
4.57601702 0.01958678 3.71140777
20.6626193 3.71140777
20.6626193
x^2
-0.1770358
0.04289548
-4.127143
0.02579792 -0.3135483
-0.0405232
-0.3135483
-0.0405232
Regression Equation:
Y = -168.8848 + 12.1870x - 0.1770x
2
E.
H0: Relationship between x, x
2
, and y are insignificant
Ha: Relationship between x, x
2
, and y are significant
T.S: F = 25.6777
P-value = 0.0129 < alpha - 0.05
Reject H0, conclude that the relationship between variables x, x
2
, and y are significant.
F.
Given x = 25
Y = -168.8848 + 12.1870(25) - 0.1770(25
2
)
= 25.1652
Exercise 27
A.
The scatter plot approximately shows that the weight and price variables do not have a strong
relationship, with many of the data points plotted in a curved line. As such, a simple linear
regression model wouldn’t be appropriate.
B.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.87761985
R Square
0.77021661
Adjusted R Square 0.74149369
Standard Error
242.80435
Observations
19
ANOVA
df
SS
MS
F
Significance F
Regression
2
3161747.29
1580873.64 26.8153971 7.7723E-06
Residual
16
943263.237
58953.9523
Total
18
4105010.53
Coefficients Standard Error
t Stat
P-value
Lower 95%
Upper 95% Lower 95.0% Upper 95.0%
Intercept
11375.9988 2565.18531
4.43476687 0.00041612 5938.0489
16813.9488 5938.0489
16813.9488
Weight
-728.33455 193.68095
-3.7604862 0.0017095
-1138.9198
-317.74928 -1138.9198
-317.74928
Weight^2
11.9737375 3.53910869
3.38326357 0.00379172 4.47116223
19.4763127 4.47116223
19.4763127
Regression Equation:
Y = 11375.9988 - 728.33456x + 11.9737x
2
C.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.84691921
R Square
0.71727214
Adjusted R Square 0.68193116
Standard Error
269.327964
Observations
19
ANOVA
df
SS
MS
F
Significance F
Regression
2
2944409.69
1472204.85 20.2957614 4.0827E-05
Residual
16
1160600.83
72537.5521
Total
18
4105010.53
Coefficients Standard Error
t Stat
P-value
Lower 95%
Upper 95% Lower 95.0% Upper 95.0%
Intercept
1283.75
95.2218148
13.4816796 3.7432E-10 1081.88877
1485.61123 1081.88877
1485.61123
Fitness
-571.75
153.540563
-3.7237717 0.00184727 -897.24145
-246.25855 -897.24145
-246.25855
Comfort
-907.08333 145.453725
-6.2362331 1.1897E-05 -1215.4315
-598.73521 -1215.4315
-598.73521
Regression Equation:
Y = 1283.75 - 571.75(Fitness) - 907.08(Comfort)
Part
B.
Adjusted R
2
= 0.7415
Part
C.
Adjusted R
2
= 0.6819
Thus, the regression equation obtained in Part
B.
is better than the equation obtained in Part
C.
D.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.9167757
R Square
0.8404776
8
Adjusted R
Square
0.7791229
4
Standard Error
224.43789
6
Observations
19
ANOVA
df
SS
MS
F
Significance
F
Regression
5
3450169.73
690033.94
6
13.698659
8
8.5356E-05
Residual
13
654840.797
50372.369
Total
18
4105010.53
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Recommended textbooks for you
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill