Bending
of
a
Channel
Section

Experiment Two: Stiffness Report from laboratory work performed on 12 May 2011 as a part of the unit of study CIVL2201 Structural Mechanics

Abstract

This report has been written to describe an experiment performed on a channel section examining the stiffness of the beam through two differing types of deformation – curvature and deflection. The aim of the experiment was to determine the value of the flexural rigidity (EI) in two different ways; using the curvature, k, and the mid-span deflection. The testing method used for the experiment is described. The experiment found that the EI values calculated were as follows: - EIcurv = 1.76E+10 Mpa.mm4 when calculated using the curvature, k. - EIdefl
*…show more content…*

7
Table
4.
....................................................................................................................................................................
7
Plotting
P
against
the
Midspan
deflection
........................................................................
8
Figure
5.
..................................................................................................................................................................
8
Table
5.
....................................................................................................................................................................
8
Discussion
............................................................................................................................
9
Conclusion
............................................................................................................................
9
References
...........................................................................................................................
9

22/05/2001

2

Bending of a Channel Section

Introduction

This report aims to describe the experiment performed to investigate the stiffness of a channel section, and in particular calculate the flexural rigidity (EI) of the beam by two different sets of calculations based on the results gained in the experiment. The EI of an object is used

Related

- Decent Essays
## Weekly Shutdown Reflection

- 1108 Words
- 5 Pages

One thing that has been brought up as a concern for the hospital is using unistrut versus structural steel to hold booms from the ceiling. Unistrut tends to move too much and causes too much movement in the booms when doctors are in surgery. The engineer on the project has started to investigate this problem and has agreed to use structural steel instead of unistrut. In my Structural Systems I class, we learned how structural steel deflects with certain

- 1108 Words
- 5 Pages

Decent Essays - Decent Essays
## Make Trusses Essay

- 1035 Words
- 5 Pages

Overall, my team used this structure because it is used for strength and weight distribution, so my team decided to use triangular shapes as the beams in order to take the force acting at one point of the bridge and wide it. This will

- 1035 Words
- 5 Pages

Decent Essays - Decent Essays
The comparison of measurement and prediction of prestress losses in prestressed members is highly documented in literature. Hale et al. (2006) studied the prestress losses behavior of girders subjected to increased fiber stresses. They concluded that the previous AASHTO LRFD Specifications equations (2004) overestimated the prestress losses by roughly 50%. It was found that the NCHRP Report 496 (Tadros et al., 2003) equations predicted the losses to within an average of 6%. Currently, there have been quite a few investigations on empirical models for prestress losses for HSC. In a study conducted by Kowalsky et al. (2001) on several HPC bridge girders in North Carolina to determine the prestress losses of HPC girders. The researchers found shrinkage losses were a small component of the overall prestress losses and that the elastic shortening and creep losses were the main contributors. These larger than expected losses from elastic shortening and creep were because of a predicted modulus of elasticity that was higher than actual. The total prestress losses ranged from 12.9% to 19.1% of the initial jacking stress. In an investigation conducted by Tadros et al. (2003), seven full-scale bridge girders were instrumented in Washington, Texas, Nebraska and New Hampshire to determine the prestress losses of HPC girders. The total prestress losses measured were found to be lower than the AASHTO LRFD (1998) model. Modiﬁed expressions were proposed to AASHTO and later adopted in

- 911 Words
- 4 Pages

Decent Essays - Decent Essays
## Esi 1020 Cold Rolled Steel

- 553 Words
- 3 Pages

1) Of all the sample materials tested during the lab, the AISI-1020 Cold Rolled Steel was found to be the strongest. Moreover, between the two samples of AISI-1020 Cold Rolled steel, the sample without the neck was found to be stronger. This was observed by calculating the ultimate tensile strength for all the samples used during the experiment. As a result, the higher the ultimate tensile stress the material endured, the stronger the material was. The ultimate tensile stress calculated for the AISI-1020 Cold Rolled was 563 MPa which was the highest of all. Therefore, concluding that the AISI-1020 Cold Rolled without a neck region was the strongest material.

- 553 Words
- 3 Pages

Decent Essays - Good Essays
## What´s Prefabricated Trusses?

- 1076 Words
- 5 Pages

Web members have a high strength-to-weight performance (Grogan, 2007). Prefabricated trusses allow for high strength members to be optimized by being placed only where they are needed to support a large chord or web force (Shepherd, 2006). Robustness is a structure’s ability to maintain a certain performance requirement. Kanno performed a plastic limit analysis on a truss, the conclusion was made that the worst case scenario was the minimization of the load under the absence of structural components (Kanno, 2012). The load is transmitted from the chords as axial forces to the webs (Wei, 2014).

- 1076 Words
- 5 Pages

Good Essays - Better Essays
## How Does It Works And How It Is Used

- 2427 Words
- 10 Pages

Several mechanical tests have to be applied for measuring static and dynamic properties of materials and most of them involve applying a force to the material and measuring its displacement. Through these tests, measuring the stress applied and the resulting strain, it is possible to calculate material properties such as the Young modulus, the physical parameter corresponding to the material stiffness.

- 2427 Words
- 10 Pages

Better Essays - Decent Essays
I have maintained a 15-year research connection with partners in the Department of Defense (DOD), interacting with five DOD program managers (PM). They include the PM of ONR’s solid mechanics program (15-year interaction), PM of ONR’s ship structure program (12-year interaction), PM of ONR’s polymer composite program, PM of Air Force Office of Scientific Research’s (AFOSR) structural mechanics program (five-year interaction), and PM of Army Research Office’s (ARO) mechanical behaviors of materials program. I interact with numerous researchers at the

- 951 Words
- 4 Pages

Decent Essays - Satisfactory Essays
## Lab Report : Shear Force And Bending Force

- 1628 Words
- 7 Pages

Shear force is the internal force acting in a rigid body that caused the body to move in positive or negative direction. In this analysis, the effect of increasing point load and effect of various distance to the bending moment was

- 1628 Words
- 7 Pages

Satisfactory Essays - Good Essays
## The Tenile Test: An Analysis Of The Tensile Force

- 1130 Words
- 5 Pages

From tensile test, how the material will react to forces being applied in tension can be determined. As the material is pulled by machine, material’s strength can be found along its elongation.

- 1130 Words
- 5 Pages

Good Essays - Decent Essays
## Reactions of Simply Supported Bems

- 1254 Words
- 6 Pages

A beam with a constant height and width is said to be prismatic. When a beam’s width or

- 1254 Words
- 6 Pages

Decent Essays - Good Essays
## Applying The Thin Flexible Compression Column For Implementation Into A Load Bearing Garment Essay

- 2279 Words
- 10 Pages

The studies begin with the development of the initial concept, the continuous floating constraint buckling column. This concept consists of a flexible composite column, under axial loading, buckling to higher modes between rigid lateral constraints. The concept is proven by a comprehensive experimental demonstration. A dynamic FEA model of that system is developed and studied. Experimental response proved consistent with FEA results. The model accurately predicts buckling forces, lateral reaction forces, stresses, strains, friction, modal shapes, and deflection. The geometric variables of the continuous floating constraint were optimized using the FEA model, and final tests were carried out.

- 2279 Words
- 10 Pages

Good Essays - Better Essays
## Finding The Steady State Temperature Distribution Of A Beam

- 1240 Words
- 5 Pages

The aim of the project is to find the steady-state temperature distribution in a beam. Since it’s impossible to solve the model analytically due to the irregular geometry of the cross-section, the temperature distribution will be found using ANSYS-Mechanical to model the problem and solve using the finite element method.

- 1240 Words
- 5 Pages

Better Essays - Decent Essays
## The Layer Of Thin Walled Structures

- 970 Words
- 4 Pages

Thin walled structures are an important part of engineering construction with territories of use becoming diverse continuously ranging from girder bridges, oil vessels to industrial warehouses , framed structures. Thin walled sections have various stresses and failure modes which can be difficult to predict. Thus structural engineers need help of computers for analysis of these structures. This has been done by using software called THIN-WALL which estimates the cross-sectional properties of the section according to the Vlasov theory. The method of input data for thin walled structure has been explained in this paper. Also the buckling analysis of the thin walled sections has been done using CUFSM which is based on the finite strip method. This method has been explained in the paper and the results the analysis have been compared with the hand calculations according to the Canadian code s-16. The results have been discussed and on basis of this review conclusions have been presented.

- 970 Words
- 4 Pages

Decent Essays - Better Essays
## Advanced Design Of Reinforced Concrete Structures Term Project

- 1933 Words
- 8 Pages

In this paper the non-conventional reinforcement details of beam-column joint has been discussed. The non-conventional details includes using inclined crossed bars in the joint, and it can be placed as additional bars or by bending the longitudinal column’s bars. This paper first discusses types of joints, collapse of structures due to beam-column joint failure, explores some experimental studies about this type of reinforcement detail, and then the main advantages of using diagonal bars in the beam-column joint. Using diagonal bars has significant advantages for the beam-column joint: increasing ductility, affecting the

- 1933 Words
- 8 Pages

Better Essays - Decent Essays
## Essay On Three Point Bending

- 883 Words
- 4 Pages

Measurement of shear modulus is also necessary. Two methods are reviewed for obtaining shear modulus: the Iosipescu shear test [15] and V-notch rail shear test [16]. Both of these tests have a rectangular specimen with notches cut in order to concentrate shear stress at the neck. It is how the specimen is loaded differentiates these two tests. The Iosipescu method utilizes a special equipment which loads the specimen along its edges by exerting compressive force. The V-Notched rail shear method uses another specialized fixture to grip the faces of the specimens and shears the specimen in tension. These two methods apply different forces in different locations of the composite specimen, therefore, it is reasonable to expect that each of the two approaches can give slightly different shear modulus. Yan-lei et al. evaluated these two methods in his study [17]. Although the Iosipescu shear specimens can give good results, he claims that edge crushing can be an issue due to the way the specimen is loaded into the fixture. And V-notched rail shear method can get rid of such unacceptable failure and it uses a larger gauge section, so this method has more

- 883 Words
- 4 Pages

Decent Essays