1. Two single-phase transformers A and B of equal voltage ratio are running in parallel and supplying a load requiring 500 A at 0.8 power factor lagging at a terminal voltage of 400 V. The equivalent impedances of the transformers, as referred to secondary windings, are (2 +j3) and (2.5 + j5) ohm. Calculate the current supplied by each transformer. (Note. The student is advised to try by arithmetic method also). [I = 304 A ; I = 197 A] %3D

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.57P: A two-winding single-phase transformer rated 60kVA,240/1200V,60Hz, has an efficiency of 0.96 when...
icon
Related questions
Question
Tutorial Problems 32.6
1. Two single-phase transformers A and B of equal voltage ratio are running in parallel and supplying a
load requiring 500 A at 0.8 power factor lagging at a terminal voltage of 400 V. The equivalent
impedances of the transformers, as referred to secondary windings, are (2 +j3) and (2.5 + j5) ohm.
Calculate the current supplied by each transformer.
(Note. The student is advised to try by arithmetic method also).
[I = 304 A ; I = 197 A]
2. Two single-phase transformers A and B are operating in parallel and supplying a common load of
1000 kVA at 0.8 p.f. lagging. The data regarding the transformers is as follows :
Transcribed Image Text:Tutorial Problems 32.6 1. Two single-phase transformers A and B of equal voltage ratio are running in parallel and supplying a load requiring 500 A at 0.8 power factor lagging at a terminal voltage of 400 V. The equivalent impedances of the transformers, as referred to secondary windings, are (2 +j3) and (2.5 + j5) ohm. Calculate the current supplied by each transformer. (Note. The student is advised to try by arithmetic method also). [I = 304 A ; I = 197 A] 2. Two single-phase transformers A and B are operating in parallel and supplying a common load of 1000 kVA at 0.8 p.f. lagging. The data regarding the transformers is as follows :
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Three Phase Transformer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning