3 Brass cube "p = 8530 kg/m , c= side length = 9 mm, are annealed by heating them first to 813°C in a furnace and then allowing them to cool slowly to 130°C in ambient air at 28°C. If the average heat transfer coefficient is 19.9 W/m .°C, If 2204 balls are to be annealed per hour, what is the total rate of heat transfer (watts) from the balls to the ambient air? 380 J/kg.°C, k = 110 W/m.°C, a = 33.9E-6 W/m.°C", %3D

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter1: Basic Modes Of Heat Transfer
Section: Chapter Questions
Problem 1.17P: The heat transfer rate from hot air by convection at 100C flowing over one side of a flat plate with...
icon
Related questions
Question
3
Brass cube "p = 8530 kg/m , c=
side length =9 mm, are annealed by heating them first to 813°C in a furnace and then
allowing them to cool slowly to 130°C in ambient air at 28°C. If the average heat
transfer coefficient is 19.9 W/m .°C, If 2204 balls are to be annealed per hour, what is
the total rate of heat transfer (watts) from the balls to the ambient air?
380 J/kg.°C, k = 110 W/m.°C, a = 33.9E-6 W/m.°C",
Transcribed Image Text:3 Brass cube "p = 8530 kg/m , c= side length =9 mm, are annealed by heating them first to 813°C in a furnace and then allowing them to cool slowly to 130°C in ambient air at 28°C. If the average heat transfer coefficient is 19.9 W/m .°C, If 2204 balls are to be annealed per hour, what is the total rate of heat transfer (watts) from the balls to the ambient air? 380 J/kg.°C, k = 110 W/m.°C, a = 33.9E-6 W/m.°C",
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning