A 3-phase transmission line operating at 33 kV and having a resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 kVA step-up transformer. Connected to the bus-bar are two alternators, one of 10,000 kVA with 10% reactance and another of 5000 kVA with 7·5% reactance. Calculate the short-circuit kVA fed to the symmetrical fault between phases if it occurs (i) at the load end of transmission line (ii) at the high voltage terminals of the transformer [(i) 44,500 kVA (ii) 100,000 kVA]

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.54P: An infinite bus, which is a constant voltage source, is connected to the primary of the...
icon
Related questions
icon
Concept explainers
Question

A 3-phase transmission line operating at 33 kV and having a resistance of 5 Ω and reactance of 20 Ω is
connected to the generating station through 15,000 kVA step-up transformer. Connected to the bus-bar
are two alternators, one of 10,000 kVA with 10% reactance and another of 5000 kVA with 7·5% reactance.
Calculate the short-circuit kVA fed to the symmetrical fault between phases if it occurs
(i) at the load end of transmission line
(ii) at the high voltage terminals of the transformer
[(i) 44,500 kVA (ii) 100,000 kVA]

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Load flow analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning