
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
(a) How many bright fringes appear between the first diffraction-envelope minima to either side of the central
maximum in a double-slit pattern if l = 550 nm, d = 0.150 mm,
and a = 30.0 mm? (b) What is the ratio of the intensity of the third
bright fringe to the intensity of the central fringe?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 4: Suppose a double-slit interference pattern has its third minimum at an angle of 0.258° with slits that are separated by 319 um. Randomized Variables 0 = 0.258° d = 319 µm > A Calcula the wavelength of the light in nm. Gr De-arrow_forwardWhen laser light of wavelength 632.8 nm passes through a diffraction grating, the first bright spots occur at ±17.8° from the central maximum. (a) What is the line density (in lines/cm) of this grating? (b) How many additional bright spots are there beyond the first bright spots, and at what angles do they occur?arrow_forwardCoherent electromagnetic waves with wavelength l = 500 nm pass through two identical slits. The width of each slit is a, and the distance between the centers of the slits is d = 9.00 mm. (a) What is the smallest possible width a of the slits if the m = 3 maximum in the interference pattern is not present? (b) What is the next larger value of the slit width for which the m = 3 maximum is absent?arrow_forward
- In two-slit interference, if the slit separation is 14 mm and the slit widths are each 2.0 mm, (a) how many two-slit maxima are in the central peak of the diffraction envelope and (b) how many are in either of the first side peak of the diffraction envelope?arrow_forwardThe intensity of the single-slit diffraction pattern at any angle 0 is given by 1 (0) = 1m (sing)². For light of wavelength 480 nm falling on a slit of width 3.5 µm, what is the value of a when 8 = 18°? 7.1 rad 0.31 rad 7.3 rad 2.3 rad 9.8 radarrow_forwardA 546-nm light is used in a double-slit apparatus. The fifth dark fringe is observed at 0.113° from the centerline, calculate the slit separation.arrow_forward
- Two slits are illuminated by a monochromatic plane wave of wavelength k. The slits have a width a=3k, and the distance between them is d=9k. (a) Determine if there are any interference maxima that are missing from the two-slit interference pattern because the minimum of the diffraction occurs in the same direction. Find all angles that lead to such missing orders. (b) Calculate the intensity of the first two-slit constructive interference fringe (|m|=1) relative to I(1), the intensity of the central peak.arrow_forwardMonochromatic light of wavelength 612 nm falls on a slit. If the angle between the first two bright fringes on either side of the central maximum is 34°, estimate the slit width. Express your answer to two significant figures and include the appropriate units. Di D= 6 μ μA Ω % μm ?arrow_forwardA slit of width 0.20 mm is illuminated with monochromatic light of wavelength 480 nm, and a diffraction pattern is formed on a screen 1.0 m from the slit. a) What is the width of the central maximum? b) What are the widths of the second- and third-order maxima?arrow_forward
- Light of wavelength 585.0 nm illuminates a slit of width 0.60 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.91 mm from the central maximum? m(b) Calculate the width of the central maximumarrow_forwardProblem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°. Randomized Variables 2 = 415 nm e = 42 ° Find the distance between the two slits in micrometers. d= 8 9 5 6 sin() cos() tan() 7 HOME cotan() asin() acos() E A 4 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END O Degrees O Radians Vol BACKSPACE DEL CLEAR +arrow_forwardMonochromatic light of a wavelength 633nm falls on a slit. If the angle between the first two bright fringes on either side of the central maximum in 32°, estimate the slit of the widtharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON