
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Interference patterns do not have an infinite number of lines, since there is a limit to how big diffraction order can be. Calculate the highest-order constructive interference possible in a double slit experiment under the following conditions: the wavelength of a source is 528 nm and distance between the slits is 0.010 mm.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.09 mm and place your screen 8.39 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.57 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength ? expressed in nanometers?arrow_forwardQuestion: In a double-slit experiment, the wavelength of the light source is 520 nm, the slit separation is 35 um, and the slit width is 7 um. Find: What is sin(theta) of the first minimum diffraction envelope? How many bright interference fringes are within the central peak of the diffraction envelope? The value of alpha for the second bright fringe in the first minimum diffraction envelope is ? *pi. The value of beta for the second bright fringe in the first minimum diffraction envelope is ? *pi. What is the ratio of the intensity of the second bright fringe to the intensity of the central fringe?arrow_forwardThe phenomenon of diffraction occurs due to the tendency of waves to spread when they encounter an opening or obstacle. Single-slit diffraction is a phenomenon observed when a wave passes through a narrow opening, such as a slit, and spreads out after passing through it. The degree of diffraction depends on the dimensions of the aperture in relation to the wavelength of the incident wave. Statement: A slit of width a is illuminated with white light. For what value of slit width will we have the first minimum for blue light, with ? = 450 ??, appearing at ? = 25th? Question options: a) 1.50 µm b) 1.98µm c) 1.05µm d) 3.60 µm e) 0.37µmarrow_forward
- In a double slit interference experiment the distance between the slits is d and the distance to the interference screen is D. Select the correct geometric conditions under which the width of the first interference fringe can be described as w=λ/θ (where λ is the wavelength of light and θ is the interference angle).arrow_forwardA double slit experiment is set up such that the two slits are 1.00 cm apart and are placed 1.20 m from the screen on which the interference pattern will be formed. A monochromatic light source of frequency 6x10^14Hz is then shone onto the slits in order to create the expected pattern of light and dark fringes. Determine the separation of the bright fringes for this experimental set-up. answer = 60µmarrow_forwardA plane wave with a wavelength of 605 nm is incident normally on a single slit with a width of 3.98 x 10m. Consider waves that reach a point on a far-away screen such that rays from the slit make an angle of 2.00° with the normal. The difference in phase for waves from the top and bottom of the slit (in rad) is i rad.arrow_forward
- In a Young's double slit experiment the two slits are 0.035 mm apart and the screen is 2.51 m away from the slits. If the third order bright fringe is 9.27 cm away from the center of the screen, what is the wavelength of the light used (in nm)?arrow_forwardIn an interference experiment using a monochromatic source emitting light of wavelength 1, the fringes are produced by two long, narrow slits separated by a distance d. The fringes are formed on a screen which is situated at a distance D >> d.Write down an expression for the fringe width w. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate. Use "lambda" (without the quotes) for 1 in the equation box. For example, use d*lambda for d2. Please use the "Display response" button to check you entered the answer you expect. w=arrow_forwardIn the previous problem (Young's double slit experiment), given that D = 5 m, a = 0.25 cm and λ = 619 nm, calculate the fringe width w. Give your answer in millimetres. Answer: mm +arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON