Suppose that, in the absence of a catalyst, a certain biochemical reaction occurs x times per second at normal body temperature 137 °C2. In order to be physiologically useful, the reaction needs to occur 5000 times faster than when it is uncatalyzed. By how many kJ>mol must an enzyme lower the activation energy of the reaction to make it useful?

Appl Of Ms Excel In Analytical Chemistry
2nd Edition
ISBN:9781285686691
Author:Crouch
Publisher:Crouch
Chapter13: Kinetic Methods
Section: Chapter Questions
Problem 3P
icon
Related questions
Question

Suppose that, in the absence of a catalyst, a certain biochemical reaction occurs x times per second at normal body temperature 137 °C2. In order to be physiologically useful, the reaction needs to occur 5000 times faster than when it is uncatalyzed. By how many kJ>mol must an enzyme lower the activation energy of the reaction to make it useful?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Theories of Reaction Rates
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Appl Of Ms Excel In Analytical Chemistry
Appl Of Ms Excel In Analytical Chemistry
Chemistry
ISBN:
9781285686691
Author:
Crouch
Publisher:
Cengage
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning