The ideal gas law describes the relationship among the pressure P, volume V, number of moles n., and absolute temperature T of an ideal gas. Here is the relationship expressed mathematically: PV = nRT where R is a proportionality constant. The units of R are determined by the units of pressure and volume used in the equation. When bar is used for pressure and I for volume, the appropriate R value is 0.08314 L bar mol-¹ K-¹ Part A How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0°C, and ideal behavior. Express your answer using three significant figures. ▸ View Available Hint(s) IVE] ΑΣΦ → O ? molecules

General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Chapter5: The Gaseous State
Section: Chapter Questions
Problem 5.127QP: A 1.000-g sample of an unknown gas at 0C gives the following data: P(atm) V (L) 0.2500 3.1908 0.5000...
icon
Related questions
Question
The ideal gas law describes the relationship among the pressure P, volume V,
number of moles n, and absolute temperature T of an ideal gas. Here is the
relationship expressed mathematically:
PV = nRT
where R is a proportionality constant. The units of R are determined by the
units of pressure and volume used in the equation. When bar used for
pressure and L for volume, the appropriate R value is
0.08314 L bar mol-¹ K-¹.
Part A
How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0 °C, and ideal behavior.
Express your answer using three significant figures.
► View Available Hint(s)
VE ΑΣΦ +
Review | Constants |
molecules
Transcribed Image Text:The ideal gas law describes the relationship among the pressure P, volume V, number of moles n, and absolute temperature T of an ideal gas. Here is the relationship expressed mathematically: PV = nRT where R is a proportionality constant. The units of R are determined by the units of pressure and volume used in the equation. When bar used for pressure and L for volume, the appropriate R value is 0.08314 L bar mol-¹ K-¹. Part A How many air molecules are in a 4.05 x 3.66 x 3.05 m³ room? Assume atmospheric pressure of 1.00 bar, a room temperature of 20.0 °C, and ideal behavior. Express your answer using three significant figures. ► View Available Hint(s) VE ΑΣΦ + Review | Constants | molecules
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Absorption and Adsorption
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Introductory Chemistry: An Active Learning Approa…
Introductory Chemistry: An Active Learning Approa…
Chemistry
ISBN:
9781305079250
Author:
Mark S. Cracolice, Ed Peters
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning