The malate aspartate shuttle plays many roles in carbohydrate and amino acid metabolism. Malate can be transferred into the cytosol and interconverted in one enzymatic step to produce [oxaloacetate/glucose/PEP/pyruvate] for use in the pathway of [glycolysis/gluconeogenesis]. A product of the urea cycle, derived from aspartate, can also be converted to malate in one enzymatic step and shuttled into the mitochondria so that the urea cycle product can be used in [fatty acid synthesis/the citric acid cycle/β-oxidation]. The amino group from aspartate can be transferred to [oxalacetate/malate/fumarate/pyruvate/a- ketoglutarate] to form glutamate, which is then transported into the mitochondria. In fact many amino acids are transaminated in this way to form glutamate in the cytosol. In this way, incoming amino acids from the bloodstream can be shuttled into the liver mitochondria as glutamate for conversion by glutamate dehydrogenase to [glutamate/a-ketoglutarate /pyruvate/oxaloacetate] and [fumarate/carbon dioxide/ammonia] so the production of carbamoyl phosphate can proceed.

Biochemistry
6th Edition
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Reginald H. Garrett, Charles M. Grisham
Chapter27: Metabolic Integration And Organ Specialization
Section: Chapter Questions
Problem 11P
icon
Related questions
Question

Help filling in the blanks:

The malate aspartate shuttle plays many roles in carbohydrate and amino acid metabolism. Malate can be transferred into the cytosol and interconverted in one enzymatic step to produce [oxaloacetate/glucose/PEP/pyruvate] for use in the pathway of [glycolysis/gluconeogenesis]. A product of the urea cycle, derived from aspartate, can also be converted to malate in one enzymatic step and shuttled into the mitochondria so that the urea cycle product can be used in [fatty acid synthesis/the citric acid cycle/β-oxidation]. The amino group from aspartate can be transferred to [oxalacetate/malate/fumarate/pyruvate/a- ketoglutarate] to form glutamate, which is then transported into the mitochondria. In fact many amino acids are transaminated in this way to form glutamate in the cytosol. In this way, incoming amino acids from the bloodstream can be shuttled into the liver mitochondria as glutamate for conversion by glutamate dehydrogenase to [glutamate/a-ketoglutarate /pyruvate/oxaloacetate] and [fumarate/carbon dioxide/ammonia] so the production of carbamoyl phosphate can proceed.

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning