
Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Write a Java program using Thread with single Server and Multiple Clients.
NOTE: Client must be running until Bye message is sent. Server should never stop.
I need answer question pls

Transcribed Image Text:Activity 1:
Write a Java program using Thread with single Server and Multiple Clients
NOTE : Client must be running until Bye message is sent. Server should never stop
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Modify the above thread program so that you implement the interface Runnable. Make themain thread waiting till all other threads finish execution.arrow_forwardPlease can you help me with the code that I have contributed, as I played a role in its development. Please ensure that only my code is utilized. This code should be written in C, and I have provided a portion of it below. Question that I need help with: You need to use the pthread for matrix multiplication. Each thread from the threadpool should be responsible for computing only a partof the multiplication (partial product as shown in the above picture –all Ti(S) are called a partical product). Your main thread should splitthe matrices accordingly and create the partial data arrays that areneeded to compute each Ti. You must create a unique task with thedata and submit it to the job queue. You can compute the partialproducts concurrently as long as you have threads available in thethreadpool. You have to remove the task the from queue and submitto a thread in the threadpool. You should define the number ofthreads to be 5 and keep it dynamic so that we can test the samecode with a…arrow_forwardComplete the following code. The goal is to implement the producer-consumer problem. You are expected to extend the provided C code to synchronize the thread operations consumer() and producer() such that an underflow and overflow of the queue is prevented. You are not allowed to change the code for implementing the queue operations, that is the code between lines 25 and 126 as shown in the screenshot. You must complete the missing parts as shown in the screenshot as well as complete the missing codes of producer and consumer. #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <time.h> #include <pthread.h> #include <semaphore.h> #include <errno.h> #include <fcntl.h> #define MAX_LENGTH_CAP 100 #define INIT -127 #define UNDERFLOW (0x80 + 0x02) #define OVERFLOW 0x80 + 0x01 #define BADPTR (0x80 + 0x03) #define CONSUMER_TERMINATION_PROBABILITY 40 #define PRODUCER_TERMINATION_PROBABILITY 30 // ============= LOCKED…arrow_forward
- Can you please help me with this code because I am struggling on how to do this, This has to be in C code. question that I need help with: Write a multithreaded program that calculates various statistical values for a list of numbers. This program will be passed a series of numbers on the command line and will then create three separate worker threads. One thread will determine the average of the numbers, the second will determine the maximum value, and the third will determine the minimum value. For example, suppose your program is passed the integers 90 81 78 95 79 72 85 The program will report The average value is 82 The minimum value is 72 The maximum value is 95 The variables representing the average, minimum, and maximum values will be stored globally. The worker threads will set these values, and the parent thread will output the values once the workers have exited. (We could obviously expand this program by creating additional threads that determine other statistical values,…arrow_forwardFill in the blanks:5. The ( 6 ) is used to implement mutual exclusion where it can be decremented by aprocess and incremented by another, but the value must either be 0 or 1.6. If deadlock prevention approach is used to deal with deadlocks in a system, the ( 7 )condition can be prevented using the direct method.7. Two threads may share the memory space, but they cannot share the same ( 8 )8. Consider round-robin (RR) scheduling algorithm is implemented with 2 seconds timeslice and it is now selecting a new process; if we have 3 blocked processes (A, B, and C),and A has been waiting the longest, then A would need to wait a period of ( 9 ) secondsto be selected.9. In real-time systems, if a task appears at random times, then it is considered ( 10 ).arrow_forwardWrite java code to create a thread by (extending), theprogram create 3 thread that displaying “fatmah” and thenumber of thread that is running.Rewrite the above program by implementing the RunnableInterfacearrow_forward
- Modify this threading example to use, exclusively, multiprocessing, instead of threading. import threadingimport time class BankAccount(): def __init__(self, name, balance): self.name = name self.balance = balance def __str__(self): return self.name # These accounts are our shared resourcesaccount1 = BankAccount("account1", 100)account2 = BankAccount("account2", 0) class BankTransferThread(threading.Thread): def __init__(self, sender, receiver, amount): threading.Thread.__init__(self) self.sender = sender self.receiver = receiver self.amount = amount def run(self): sender_initial_balance = self.sender.balance sender_initial_balance -= self.amount # Inserting delay to allow switch between threads time.sleep(0.001) self.sender.balance = sender_initial_balance receiver_initial_balance = self.receiver.balance receiver_initial_balance += self.amount # Inserting delay to allow switch between threads time.sleep(0.001)…arrow_forwardThis is some code in C for quicksort. The quicksort works correctly, but I am trying to implement multithreading. I am trying to run the recursive calls in parallel with a limit on how much threads can be running at one time (set by the global variable 'maximumThreads'). My logic is incorrect with managing how many threads can be ran at the same time. The part that I need you to look at is after the for loop in quick sort, where I have my logic for the mutex and the conditional variable. Right now when I run my code, the program runs indefinitely. I would like help with correctly implementing this part. #include <stdlib.h>#include <string.h>#include <pthread.h>#include <stdio.h>#define SORT_THRESHOLD 40typedef struct _sortParams {char** array;int left;int right;int* currentThreads;pthread_mutex_t* mutex;pthread_cond_t* cond_var} SortParams;static int maximumThreads; /* maximum # of threads to be used *//* This is an implementation of insert sort, which…arrow_forwardMulti-tasking can not be achieved with a single processor machine. True False 2. Async/Await is best for network bound operations while multi-threading and parallel programming is best for CPU-bound operations. True False 3. The following is a characteristic of an async method:The name of an async method, by convention, ends with an "Async" suffix. True False 4. Using asynchronous code for network bound operations can speed up the time needed to contact the server and get the data back. True False 5. Asynchronous programming has been there for a long time but has tremendously been improved by the simplified approach of async programming in C# 5 through the introduction of: The Task class True Falsearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education

Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON

Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education