Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 19, Problem 87CWP

(a)

Interpretation Introduction

Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.

Concept introduction: The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

To determine: Standard enthalpy of the reaction and change in standard entropy of the given reaction.

(a)

Expert Solution
Check Mark

Answer to Problem 87CWP

Standard enthalpy of the reaction and change in standard entropy of the given reaction is +131.5kJ/mol_ and 134J/Kmol_ , respectively.

Explanation of Solution

Hydrogen gas is produced by reacting graphite with water.

C(s)+H2O(g)CO(g)+H2(g)

The standard enthalpy of formation of H2O(g) is 242kJ/mol .

The standard enthalpy of formation of CO(g) is 110.5kJ/mol .

The standard enthalpy of formation of C(s) and H2(g) is zero since the standard enthalpy of formation of free elements in their standard state is zero.

The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

Therefore, the above equation becomes,

ΔHreaction=ΔHformation(CO(g))ΔHformation(H2O(g))

Substitute the value of ΔHformation(CO(g)) and ΔHformation(H2O(g)) in the above equation.

ΔHreaction=(110.5kJ/mol)(242kJ/mol)=110.5kJ/mol+242kJ/mol=+131.5kJ/mol_

Therefore, the standard enthalpy of the reaction is +131.5kJ/mol .

The standard entropy of H2O(g) is 189J/Kmol .

The standard entropy of CO(g) is 198J/Kmol .

The standard entropy of C(s) is 6J/Kmol .

The standard entropy of H2(g) is 131J/Kmol .

The standard entropy change of the reaction is calculated by the formula,

ΔSreaction=S(product)S(reactant)

Therefore, the above equation becomes,

ΔSreaction=[S(CO(g))+S(H2(g))][S(H2O(g))+S(C(s))]

Substitute the value of S(CO(g)) , S(H2(g)) , S(H2O(g)) and S(C(s)) in the above equation.

ΔSreaction=[198J/Kmol+131J/Kmol][189J/Kmol+6J/Kmol]=329J/Kmol195J/Kmol=134J/Kmol_

Therefore, the standard entropy change of the reaction is 134J/Kmol_ .

(b)

Interpretation Introduction

Interpretation: Standard enthalpy of the reaction and change in standard entropy of the given reaction are to be determined and the temperature at which the change in standard Gibb’s energy is zero, is to be calculated.

Concept introduction: The standard enthalpy of the reaction is calculated by the formula,

ΔHreaction=ΔHformation(product)ΔHformation(reactant)

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

To determine: The temperature at which the change in standard Gipp’s energy of the given reaction is zero.

(b)

Expert Solution
Check Mark

Answer to Problem 87CWP

The temperature at which the change in standard Gipp’s energy of the given reaction is zero is 981.3K_

Explanation of Solution

Given

The change in standard Gipp’s energy of the given reaction is zero.

Standard enthalpy of the reaction and change in standard entropy of the given reaction is +131.5kJ/mol and 134J/Kmol , respectively.

The change in standard Gipp’s free energy of the reaction is calculated as,

ΔG=ΔHTΔS

Substitute the value of ΔG , ΔH and ΔS in the above equation.

0=+131.5×103J/molT×134J/KmolT×134J/Kmol=131.5×103J/molT=131.5×103J/mol134J/Kmol=981.3K_

Therefore, the temperature at which the change in standard Gipp’s energy of the given reaction is zero is 981.3K_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 19 Solutions

Chemistry: An Atoms First Approach

Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Diagonal relationships in the periodic table exist...Ch. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10QCh. 19 - Prob. 11ECh. 19 - Prob. 12ECh. 19 - Prob. 13ECh. 19 - Prob. 14ECh. 19 - Prob. 15ECh. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Prob. 18ECh. 19 - Prob. 19ECh. 19 - Prob. 20ECh. 19 - Prob. 21ECh. 19 - Prob. 22ECh. 19 - Prob. 23ECh. 19 - Prob. 24ECh. 19 - Consider element 113. What is the expected...Ch. 19 - Prob. 26ECh. 19 - Prob. 27ECh. 19 - Prob. 28ECh. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 31ECh. 19 - Prob. 32ECh. 19 - Prob. 33ECh. 19 - Prob. 34ECh. 19 - The following illustration shows the orbitals used...Ch. 19 - Prob. 36ECh. 19 - Silicon is produced for the chemical and...Ch. 19 - Prob. 38ECh. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - Prob. 41ECh. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Prob. 45ECh. 19 - Prob. 46ECh. 19 - Prob. 47ECh. 19 - Prob. 48ECh. 19 - Prob. 49ECh. 19 - Prob. 50ECh. 19 - Prob. 51ECh. 19 - Prob. 52ECh. 19 - Use bond energies to estimate the maximum...Ch. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Prob. 59ECh. 19 - Describe the bonding in SO2 and SO3 using the...Ch. 19 - Prob. 61ECh. 19 - Prob. 62ECh. 19 - Prob. 63ECh. 19 - Prob. 64ECh. 19 - Prob. 65ECh. 19 - Prob. 66ECh. 19 - Prob. 67ECh. 19 - Prob. 68ECh. 19 - Prob. 69ECh. 19 - Prob. 70ECh. 19 - Prob. 71ECh. 19 - Prob. 72ECh. 19 - Prob. 73AECh. 19 - The inert-pair effect is sometimes used to explain...Ch. 19 - Prob. 75AECh. 19 - Prob. 76AECh. 19 - Prob. 77AECh. 19 - Prob. 78AECh. 19 - Prob. 79AECh. 19 - Draw Lewis structures for the AsCl4+ and AsCl6...Ch. 19 - Prob. 81AECh. 19 - Prob. 82AECh. 19 - Prob. 83AECh. 19 - Prob. 84AECh. 19 - Prob. 85AECh. 19 - Prob. 86AECh. 19 - Prob. 87CWPCh. 19 - Prob. 88CWPCh. 19 - Prob. 89CWPCh. 19 - Prob. 90CWPCh. 19 - What is the hybridization of the underlined...Ch. 19 - Prob. 92CWPCh. 19 - What is the hybridization of the central atom in...Ch. 19 - Prob. 94CWPCh. 19 - Prob. 95CWPCh. 19 - Prob. 96CWPCh. 19 - Prob. 97CPCh. 19 - Prob. 98CPCh. 19 - Prob. 99CPCh. 19 - Prob. 100CPCh. 19 - Prob. 101CPCh. 19 - Prob. 102CPCh. 19 - Prob. 103CPCh. 19 - Prob. 104CPCh. 19 - Prob. 105CPCh. 19 - Prob. 106IPCh. 19 - Prob. 107IPCh. 19 - Prob. 108IPCh. 19 - Prob. 109IPCh. 19 - Prob. 110MPCh. 19 - Prob. 111MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY