Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
3rd Edition
ISBN: 9780133593211
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 3, Problem 10MDP
  1. 10. Show that for circular motion, force = mass * velocity squared/radius.
Expert Solution & Answer
Check Mark
To determine

Show that the force of the circular motion is, F=mv2R.

Answer to Problem 10MDP

The force of the circular motion is proved as F=mv2R_.

Explanation of Solution

Circular motion is defined as the movement of an object along a circular path. When an object is moved at constant speed, the velocity is changed due to its direction not because of its magnitude. This changing velocity shows that the object is accelerating. To obtain this accelerating there should be a force which is called as centripetal force.

The derivation of the force of the circular motion is as follows,

Consider a ball moving with the constant speed v and radius R as shown in Figure 1.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 10MDP , additional homework tip  1

To derive the acceleration consider the initial velocity at A and the final velocity at B.

Now modify Figure 1 as shown in Figure 2.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 10MDP , additional homework tip  2

Use the similar triangles in Figure2, therefore it becomes as follows:

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 10MDP , additional homework tip  3

The acceleration is the rate of change of velocity.

a=Δvt (1)

Using similar triangle theorem,

Δvv=sR (2)

The arc with the chord is,

s=vt (3)

Rearrange equation (3) to find v.

v=st (4)

Rearrange equation (2) to find Δv.

Δv=v(sR) . (5)

Substitute equation (5) in equation (1) to obtain the expression of acceleration in terms of v and s.

a=v(sR)t

a=vsRt (6)

Substitute v for st in equation (6) to find acceleration.

a=v(v)R

a=v2R (7)

Write the expression for force.

F=ma . (8)

Substitute equation (7) in (8) to obtain the expression force of the circular motion.

F=mv2R (9)

Here,

m is the mass,

v is the velocity,

R is the radius.

Therefore, the equation (9) shows the force of the circular motion.

Conclusion:

Thus, the force of the circular motion is proved as F=mv2R_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
08:49
Students have asked these similar questions
C)If both cyclists have 170 mm cranks on their bikes, what will be the mechanical advantage (considering only the movement of the feet with a constant force for walking and riding), in percent, that each rider will have achieved over walking the same distance? (This can be found by dividing the distance wallked by the distance the feet move in riding.)
Find mobility
Plz give me answer fast

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Determine the force in members BF, BG, and AB, and state if the members are in tension or compression. Probs. 6...

INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, and Service (5th Edition)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY