Structural Analysis
Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 12P
To determine

Find the forces in the members of the truss by the method of joints.

Expert Solution & Answer
Check Mark

Answer to Problem 12P

The forces in the member are FIJ=FJH=0kN_, FHI=50kN(C)_, FGI=30kN(T)_, FGH=40kN(T)_, FFH=30kN(C)_, FFG=150kN(C)_, FEG=120kN(T)_, FEF=120kN(T)_, FDF=120kN(C)_, FDE=250kN(C)_, FCE=270kN(T)_, FCD=200kN(T)_, FBD=270kN(C)_, FBC=350kN(C)_, FAC=480kN(T)_, and FAB=280kN(T)_.

Explanation of Solution

Given information:

Apply the sign conventions for calculating reactions, forces and moments using the three equations of equilibrium as shown below.

  • For summation of forces along x-direction is equal to zero (Fx=0), consider the forces acting towards right side as positive (+) and the forces acting towards left side as negative ().
  • For summation of forces along y-direction is equal to zero (Fy=0), consider the upward force as positive (+) and the downward force as negative ().
  • For summation of moment about a point is equal to zero (Matapoint=0), consider the clockwise moment as negative and the counter clockwise moment as positive.

Method of joints:

The negative value of force in any member indicates compression (C) and the positive value of force in any member indicates Tension (T).

Calculation:

Consider the forces in the members AC, CE, EG, GI, IJ, BD, DF, FH, HJ, AB, BC, CD, DE, EF, FG, GH, and HI, are FAC,FCE,FEG,FGI,FIJ,FBD,FDF,FFH,FHJ,FAB,FBC,FCD,FDE,FEF,FFG,FGH,FHI.

Show the free body diagram of the truss as shown in Figure 1.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  1

Refer Figure 1.

Consider the member BC, DE, FG, and HI with the horizontal as θ.

tanθ=68θ=tan1(68)θ=36.86°

Consider the horizontal and vertical reactions at A are Ax and Ay.

Consider the vertical reaction at B is By.

Take the sum of the forces in the vertical direction as zero.

Fy=0Ay+By=0Ay=By        (1)

Take the sum of the forces in the horizontal direction as zero.

Fx=0Ax+80+80+80+40=0Ax=280kN

Take the sum of the moments at A is zero.

MA=0(80×6)(80×12)(80×18)(40×24)+8By=03840+8By=0By=38408By=480kN

Substitute 480kN for By in Equation (1).

Ay=480kN

Show the joint A as shown in Figure 2.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  2

Refer Figure 2.

Take the sum of the forces in the horizontal direction as zero.

Fx=0Ax=FABFAB=(280kN)FAB=280kN(T)

Take the sum of the forces in the vertical direction as zero.

Fy=0Ay=FACFAC=(480kN)FAC=480kN(T)

Show the joint B as shown in Figure 3.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  3

Refer Figure 3.

Take the sum of the forces in the horizontal direction as zero.

 Fx=0FBCcosθ=FBAFBC=FBAcos(36.86°)FBC=280cos(36.86°)FBC=350kN(C)

Take the sum of the forces in the vertical direction as zero.

Fy=0By+FBCsinθ=FBDBy+(350)sin(36.86°)=FBD

Substitute 480kN for By

480+(350)sin(36.86°)=FBD480+(350)sin(36.86°)=FBDFBD=270kNFBD=270kN(C)

Show the joint C as shown in Figure 4.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  4

Refer Figure 4.

Take the sum of the forces in the horizontal direction as zero.

 Fx=080+FCBcos36.86°+FCD=080+(350)cos36.86°+FCD=0FCD=350cos36.86°80FCD=200kN(T)

Take the sum of the forces in the vertical direction as zero.

Fy=0FCEFCAFCBsin36.86°=0FCE(480)(350)sin36.86°=0FCE=270kN(T)

Show the joint D as shown in Figure 5.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  5

Refer Figure 5.

Take the sum of the forces in the horizontal direction as zero.

 Fx=0FDEcosθ=FDCFDE=200cos(36.86°)FDE=250kN(C)

Take the sum of the forces in the vertical direction as zero.

Fy=0FDB+FDEsinθ=FDF(270)+(250)sin(36.86°)=FDF120kN=FDFFDF=120kN(C)

Show the joint E as shown in Figure 6.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  6

Refer Figure 6.

Take the sum of the forces in the horizontal direction as zero.

 Fx=080+FEDcos36.86°+FEF=080+(250)cos36.86°+FEF=0FEF=250cos36.86°80FEF=120kN(T)

Take the sum of the forces in the vertical direction as zero.

Fy=0FEGFECFEDsin36.86°=0FEG(270)(250)sin36.86°=0FEG=120kNFEG=120kN(T)

Show the joint F as shown in Figure 7.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  7

Refer Figure 7.

Take the sum of the forces in the horizontal direction as zero.

 Fx=0FFGcosθ=FEFFFG=120cos(36.86°)FFG=150kN(C)

Take the sum of the forces in the vertical direction as zero.

Fy=0FFD+FFGsinθ=FFH(120)+(150)sin(36.86°)=FFH30kN=FFHFFH=30kN(C)

Show the joint G as shown in Figure 8.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  8

Refer Figure 8.

Take the sum of the forces in the horizontal direction as zero.

 Fx=080+FGFcos36.86°+FGH=080+(150)cos36.86°+FGH=0FGH=150cos36.86°80FGH=40kN(T)

Take the sum of the forces in the vertical direction as zero.

Fy=0FGIFGEFGFsin36.86°=0FGI(120)(150)sin36.86°=0FGI=30kNFGI=30kN(T)

Show the joint H as shown in Figure 9.

Structural Analysis, Chapter 4, Problem 12P , additional homework tip  9

Refer Figure 9.

Take the sum of the forces in the horizontal direction as zero.

 Fx=0FHIcosθ=FHGFHI=40cos(36.86°)FHI=50kN(C)

The forces in the member IJ and JH is zero as no force is acts at the joint J.

Thus, the forces in the member are FIJ=FJH=0kN_, FHI=50kN(C)_, FGI=30kN(T)_, FGH=40kN(T)_, FFH=30kN(C)_, FFG=150kN(C)_, FEG=120kN(T)_, FEF=120kN(T)_, FDF=120kN(C)_, FDE=250kN(C)_, FCE=270kN(T)_, FCD=200kN(T)_, FBD=270kN(C)_, FBC=350kN(C)_, FAC=480kN(T)_, and FAB=280kN(T)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!