Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
1st Edition
ISBN: 9781111580704
Author: Kevin D. Dahm, Donald P. Visco
Publisher: Cengage Learning
Question
Book Icon
Chapter 4.8, Problem 30P

(A)

Interpretation Introduction

Interpretation:

Determine the physical state of steam leaving valve

Concept Introduction:

The steady state energy balance equation for throttling valve.

ddt{M(U^+v22+gh)}={j=1j=Jm˙j,in(H^j+vj22+ghj)k=1k=Km˙k,out(H^k+vk22+ghk)+W˙S+W˙EC+Q˙}

Here, time is t, total mass of the system is M, specific internal energy of the system is U^, velocity of the system is v, height of the system is h, acceleration due to gravity is g, mass flow rate for inlet and outlet streams is m˙j,in and m˙k,out, specific enthalpies of streams inlet and outlet is H^j and H^k, heights at which streams enters and leave the system is hj and hk, rate at which work is added to the system through expansion or contraction of the system is W˙EC, rate at which shaft work is added to the system is W˙S, and the rate at which heat is added to the system is Q˙.

Write the exiting specific enthalpy.

H^out=qH^V+(1q)H^L

Here, the physical state of the nitrogen leaving the valve is q, specific enthalpy of liquid and vapor is H^L and H^V respectively.

(B)

Interpretation Introduction

Interpretation:

Determine the rate at which entropy is generated in the valve

Concept Introduction:

Write the general expression for an entropy balance equation.

d(MS^)dt=j=1j=Jm˙j,inS^jk=1k=Km˙k,outS^k+n=1n=NQ˙nTn+S˙gen

Here, mass of the system is M, specific entropy of the system is S^, time taken is t, mass flow rates of individual streams entering and leaving the system are m˙j,in and m˙k,out, specific entropies of streams entering and leaving the system are S^j and S^k, actual rate at which heat is added to or removed from the system at one particular location is Q˙n, the temperature of the system at the boundary where the heat transfer labeled n occurs is Tn, and the rate at which entropy is generated within the boundaries of the system is S˙gen.

(C)

Interpretation Introduction

Interpretation:

Determine the maximum work produced by the turbine

Concept Introduction:

Write the general expression for an entropy balance equation.

d(MS^)dt=j=1j=Jm˙j,inS^jk=1k=Km˙k,outS^k+n=1n=NQ˙nTn+S˙gen

Here, mass of the system is M, specific entropy of the system is S^, time taken is t, mass flow rates of individual streams entering and leaving the system are m˙j,in and m˙k,out, specific entropies of streams entering and leaving the system are S^j and S^k, actual rate at which heat is added to or removed from the system at one particular location is Q˙n, the temperature of the system at the boundary where the heat transfer labeled n occurs is Tn, and the rate at which entropy is generated within the boundaries of the system is S˙gen.

Write the steady state energy balance equation for reversible compressor.

ddt{M(U^+v22+gh)}=j=1j=Jm˙j,in(H^j+vj22+ghj)k=1k=Km˙k,out(H^k+vk22+ghk)+W˙S+W˙EC+Q˙

Here, time taken is t, total mass of the system is M, specific internal energy of the system is U^, velocity of the system is v, height of the system is h, acceleration due to gravity is g, mass flow rate for inlet and outlet streams is m˙j,in and m˙k,out, specific enthalpies of streams inlet and outlet is H^j and H^k, heights at which streams enters and leave the system is hj and hk, rate at which work is added to the system through expansion or contraction of the system is W˙EC, rate at which shaft work is added to the system is W˙S, and the rate at which heat is added to the system is Q˙.

(D)

Interpretation Introduction

Interpretation:

Compare the physical state of the fluid leaving the Idealized turbine

Blurred answer
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The