ECE6320_HW01SolMatlab (1)
pdf
School
Georgia Institute Of Technology *
*We aren’t endorsed by this school
Course
6320
Subject
Electrical Engineering
Date
Dec 6, 2023
Type
Pages
6
Uploaded by ovrovg
1
ECE6320 POWER SYSTEM OPERATION AND CONTROL
FALL 2023
Homework 1:
SOLUTIONS
(3 points)
Due Date: Wednesday, September 6
Problem 1
a) Develop a computer program to build the Ybus matrix for a system with the following
data. Present the source code and the output matrix.
Transmission Line Data (values in p.u.)
From Bus
To Bus
R
X
Tot. Charging
1
2
0
0.2
0
1
3
0
0.5
0
1
4
0
0.1
0
2
3
0
0.25
0
2
4
0
0.4
0
3
5
0
0.6
0
b) How would Ybus change if line 1-2 is upgraded to a line with the following
parameters?
From Bus
To Bus
R (p.u.)
X (p.u.)
Tot. Charging
1
2
0.10
0.250
0.100
Solution:
clear
all
j = sqrt(-1);
% 1.a
% INPUT = [
% 1 2
0
0.2 0;
% 1 3
0
0.5 0;
% 1 4
0
0.1 0;
% 2 3
0
0.25
0;
% 2 4
0
0.4 0;
% 3 5
0
0.6 0];
% 1.b
INPUT = [
1
2
0.1 0.25
0.1;
1
3
0
0.5 0;
1
4
0
0.1 0;
2
3
0
0.25
0;
2
4
0
0.4 0;
3
5
0
0.6 0];
% build Ybus
nlines = size(INPUT,1);
Ybus = zeros(5,5);
fr_node = INPUT(:,1);
to_node = INPUT(:,2);
r = INPUT(:,3);
x = INPUT(:,4);
2
bc = INPUT(:,5);
for
i = 1:nlines
row = fr_node(i);
col = to_node(i);
Ybus(row,col) = -1/(r(i)+j*x(i));
% negative of admittance
= 1/jX = -j(1/X)
end
% Add transpose to create symmetric matrix
Ybus = Ybus + transpose(Ybus)
d = -sum(Ybus,2);
Ybus = Ybus + diag(d)
% add line charging
for
i = 1:nlines
row = fr_node(i);
col = to_node(i);
Ybus(row,row) = Ybus(row,row) + j*0.5*bc(i);
Ybus(col,col) = Ybus(col,col) + j*0.5*bc(i);
end
Output:
a)
Ybus =
0.0000 -17.0000i
0.0000 + 5.0000i
0.0000 + 2.0000i
0.0000 +10.0000i
0.0000 + 0.0000i
0.0000 + 5.0000i
0.0000 -11.5000i
0.0000 + 4.0000i
0.0000 + 2.5000i
0.0000 + 0.0000i
0.0000 + 2.0000i
0.0000 + 4.0000i
0.0000 - 7.6667i
0.0000 + 0.0000i
0.0000 + 1.6667i
0.0000 +10.0000i
0.0000 + 2.5000i
0.0000 + 0.0000i
0.0000 -12.5000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 1.6667i
0.0000 + 0.0000i
0.0000 - 1.6667i
b)
Ybus =
1.3793 -15.4483i
-1.3793 + 3.4483i
0.0000 + 2.0000i
0.0000 +10.0000i
0.0000 + 0.0000i
-1.3793 + 3.4483i
1.3793 - 9.9483i
0.0000 + 4.0000i
0.0000 + 2.5000i
0.0000 + 0.0000i
0.0000 + 2.0000i
0.0000 + 4.0000i
0.0000 - 7.6667i
0.0000 + 0.0000i
0.0000 + 1.6667i
0.0000 +10.0000i
0.0000 + 2.5000i
0.0000 + 0.0000i
0.0000 -12.5000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 1.6667i
0.0000 + 0.0000i
0.0000 - 1.6667i
3
Problem 2
Write a computer program to reproduce the values shown on slide L02_30 (solution of a
power flow problem using Gauss). Report the program code and the program output.
Solution:
Matlab M-file:
clear all;
i
= sqrt(-1);
E2 = 1 + i*0;
% Flat start
v
=0;
err=999;
while err > 0.00001,
Res = [v E2 err]
v = v+1;
E2new = ((-1+i*0.5)/conj(E2)-(-5+i*15)*(1.0+i*0.0))/(5-i*14.70);
err=abs(E2new-E2);
E2=E2new;
end;
Matlab Result
>> HW01_2
Res =
0
1
999
Res =
1.0000
0.9671 - 0.0568i
0.0657
Res =
2.0000
0.9624 - 0.0553i
0.0049
Res =
3.0000
0.9622 - 0.0556i
0.0004
Res =
4.0000
0.9622 - 0.0556i
0.0000
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
4
Problem 3
Reproduce the values shown on slide L02_39 (solution of a power flow problem
including a PV bus). Report the program code and the program output.
Solution:
Matlab M-file
clear all;
v = -1;
Y = [5-1i*14.95 , -5+1i*15 ; -5+1i*15 , 5-1i*14.7];
E1 = 1;
P2 = 0;
E2 = 1.05;
E2_temp = 0;
out = [];
for k = 0:2
Q2 = -imag(conj(E2)*(Y(2,1)*E1+Y(2,2)*E2));
E2_temp = 1/Y(2,2)*((P2-1i*Q2)/conj(E2)-Y(2,1)*E1);
E2 = abs(E2)*exp(1i*angle(E2_temp));
v=v+1;
out = [out;v,P2,Q2,abs(E2_temp),180/pi*angle(E2_temp),
abs(E2),180/pi*angle(E2)];
end;
Matlab Result;
v P2 Q2 V2_t Theta2_t V2 Theta2
0 0 0.457 1.045 -0.836 1.050 -0.836
1 0 0.535 1.049 -0.941 1.050 -0.941
2 0 0.545 1.050 -0.955 1.050 -0.955
5
Problem 4
Determine the solution of the following simultaneous system of equations using
Newton’s method.
2
2
1
1
2
3
2
2
2
2
1
2
1
2
3
2
2
2
3
1
2
2
3
3
( )
2
4
0
( )
2
5
0
( )
3
2
7
0
f
x
x
x
f
x
x
x x
x
f
x
x
x x
x
=
+
+
−
=
=
−
+
+
−
=
=
−
+
+
−
=
x
x
x
Calculate the Jacobian explicitly
Report the code and the program output for the functions f and variables x at each
iteration. Assume the initial condition is
1
2
3
1;
2;
1.
x
x
x
=
=
Solution:
Matlab M-file
clear
all
clc
%format short e % exponential
v=0;
x=[1; 1; 1];
% column vector
err = 999;
iter = 0
while
err > 0.001,
iter = iter + 1;
f = [x(1)^2+2*x(2)^2+x(3)-4;
2*x(1)^2-x(2)^2+x(1)*x(2)+x(3)^2-5;
x(1)^2-3*x(2)^2+x(2)*x(3)+2*x(3)^2-7];
J = [
2*x(1)
4*x(2)
1;
4*x(1)+x(2)
x(1)-2*x(2)
2*x(3);
2*x(1)
x(3)-6*x(2)
4*x(3)-x(2)];
dx
= -inv(J)*f;
I(iter,:) = iter;
X(iter,:) = x';
F(iter,:) = f';
E(iter,:) = err;
err = max(abs(f));
x
= x + dx;
v
= v + 1;
end
;
[I X F E]
Matlab Result
ans =
1.0000
1.0000
1.0000
1.0000
0
-2.0000
-6.0000
999.0000
2.0000
0.6226
0.7358
2.8113
0.2820
3.5956
9.6390
6.0000
3.0000
1.2326
0.7190
1.8193
0.3726
1.7176
0.8961
9.6390
4.0000
0.9106
0.8531
1.8547
0.1396
0.1474
0.1079
1.7176
5.0000
0.8931
0.8285
1.8309
0.0015
0.0010
-0.0404
0.1474
6.0000
0.8859
0.8294
1.8395
0.0001
0.0002
0.0145
0.0404
7.0000
0.8883
0.8290
1.8364
0.0000
0.0000
-0.0051
0.0145
8.0000
0.8874
0.8291
1.8375
0.0000
0.0000
0.0018
0.0051
9.0000
0.8878
0.8291
1.8371
0.0000
0.0000
-0.0007
0.0018
6
Problem 5
Reproduce the results of the two-bus system Newton power flow shown on slides L03_22 and
L03_23. Report the code and the program output. Show the Jacobian matrix at each iteration.
Solution:
Matlab M-file
clear all;
format short
v=0;
x=[0; 1];
% [theta2; V2] column vector
err = 999;
while err > 0.0001,
f
= [x(2)*10*sin(x(1))+2; x(2)*(-10*cos(x(1)))+x(2)^2*10+1];
J
= [10*x(2)*cos(x(1))
10*sin(x(1)); 10*x(2)*sin(x(1)) -
10*cos(x(1))+20*x(2)]
dx
= -inv(J)*f;
Res
= [v x' f' err]
err
= max(abs(f));
x
= x + dx;
v
= v + 1;
end;
Matlab Result:
>> HW01_5
J =
10
0
0
10
Res =
0
0
1
2
1
999
J =
8.8206
-1.9867
-1.7880
8.1993
Res =
1.0000
-0.2000
0.9000
0.2120
0.2794
2.0000
J =
8.3538
-2.3123
-1.9855
7.4441
Res =
2.0000
-0.2333
0.8587
0.0145
0.0190
0.2794
J =
8.3169
-2.3380
-1.9999
7.3850
Res =
3.0000
-0.2360
0.8554
0.0001
0.0001
0.0190
J =
8.3166
-2.3382
-2.0000
7.3846
Res =
4.0000
-0.2360
0.8554
0.0000
0.0000
0.0001
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
The question is attached in the image. Total answer is needed.
arrow_forward
2. When a large shunt capacitor is suddenly connected in parallel with the load bus in
the distribution feeder, what would happen to this bus current?
O A. Increase
B. Decrease
D. None of Above
arrow_forward
1.
FIGURE 52 shows the one-line diagram of a simple three-bus power system with
generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled
loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in
per unit on a 100 MVA base. For the purpose of hand calculations, line resistances
and line charging susceptances are neglected
a) Using Gauss-Seidel method and initial estimates of Va
0)-1.0+)0 and V o)-
(
1.0 +j0, determine V2 and V3. Perform two iterations
(b) If after several iterations the bus voltages converge to
V20.90-j0.10 pu
0.95-70.05 pu
determine the line flows and line losses and the slack bus real and reactive power.
2
400 MW
320 Mvar
Slack
0.0125
0.05
300 MW
270 Mvar
FIGURE 52
arrow_forward
V6
arrow_forward
The term brute-force method is used in your reading material in reference to
a.
cable installation
on
b. the I/0 track
replacement of relays
grounding
с.
d.
arrow_forward
The maximum electrical trade size of intermediate conduit is
a.) 150 mm b.) 125 mm c.) 200 mm d.) 100 mm
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Related Questions
- The question is attached in the image. Total answer is needed.arrow_forward2. When a large shunt capacitor is suddenly connected in parallel with the load bus in the distribution feeder, what would happen to this bus current? O A. Increase B. Decrease D. None of Abovearrow_forward1. FIGURE 52 shows the one-line diagram of a simple three-bus power system with generation at bus I. The voltage at bus l is V1 = 1.0L0° per unit. The scheduled loads on buses 2 and 3 are marked on the diagram. Line impedances are marked in per unit on a 100 MVA base. For the purpose of hand calculations, line resistances and line charging susceptances are neglected a) Using Gauss-Seidel method and initial estimates of Va 0)-1.0+)0 and V o)- ( 1.0 +j0, determine V2 and V3. Perform two iterations (b) If after several iterations the bus voltages converge to V20.90-j0.10 pu 0.95-70.05 pu determine the line flows and line losses and the slack bus real and reactive power. 2 400 MW 320 Mvar Slack 0.0125 0.05 300 MW 270 Mvar FIGURE 52arrow_forward
- V6arrow_forwardThe term brute-force method is used in your reading material in reference to a. cable installation on b. the I/0 track replacement of relays grounding с. d.arrow_forwardThe maximum electrical trade size of intermediate conduit is a.) 150 mm b.) 125 mm c.) 200 mm d.) 100 mmarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning