[HW9] Hypothesis Testing and Regression Analysis
xlsx
School
Bloomsburg University *
*We aren’t endorsed by this school
Course
101
Subject
Statistics
Date
Apr 3, 2024
Type
xlsx
Pages
17
Uploaded by PresidentGrouse4378
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.8973275062
R Square
0.8051966534
Adjusted R Square
0.7917619398
Standard Error
2.2781474488
Observations
32
ANOVA
df
SS
MS
F
Significance F
Regression
2 622.110031848 311.05501592
59.93403952 5.0020496E-11
Residual
29 150.508718152 5.1899557983
Total
31
772.61875
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Intercept
-13.365770151 7.65113640121 -1.7468999964 0.0912393677 -29.014101115
Yards/Game
0.1220941466
0.0123093957 9.9187766456 7.938703E-11 0.0969186056
Opponent Yards/Game
-0.0142907103 0.01617121466 -0.8837128587 0.3841190458 -0.0473645579
Seeing as our yards/game p-value is lower than our alpha, we can say that our yards/game predictor is a
However, our opponent yards/game is not a signifigant estimate as its p-value is far larger than our alph
So changes in yard/game are associated with points/game, but changes with opponent yards/game are The intercept coefficient shows us that if yards/game and opponent yards/game are zero, then the pred
The yards/game coefficient means that as our yards per game increases by one unit while holding all oth
Even though our opponent yards/game is not signifigant, we can still explain it. The opponent yards/gam
Upper 95%
Lower 95.0%
Upper 95.0%
2.2825608123 -29.014101115 2.2825608123
0.1472696876 0.0969186056 0.1472696876
0.0187831372 -0.0473645579 0.0187831372
a signifigant estimate
ha value
not associated with points/game
dicted points/game is -13.365
her variables constant, our points per game increases by 0.122
me coefficient means that as our oppoenent yards per game increases by one unit while holding all other variab
bles constant, our points per game decreases by 0.014
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.7563284474
R Square
0.5720327203
Adjusted R Square
0.5577671443
Standard Error
3.3199173918
Observations
32
ANOVA
df
SS
MS
F
Significance F
Regression
1 441.963205342 441.96320534 40.098816955 5.5278694E-07
Residual
30 330.655544658 11.021851489
Total
31
772.61875
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Intercept
-0.616076942 3.57169120526 -0.1724888594 0.8642116413 -7.9104435129
Passing Yards/Game
0.1041010312
0.0164395245 6.3323626676 5.527869E-07 0.0705270432
Since as our p-value is less than 1% for our passing yards per game coefficient, we can say that passin
Now looking at our intercept, we can say that with 0 passing yards per game, our points per game wil
This may seem ridiculuous since it would be impossible to have negative points in a game, but we are
Now our passing yards per game coefficient means that if we passing yards per game increases by on
With this information, we can say changes in passing yards per game impact our points per game
10
15
20
25
30
35
0
50
100
150
200
250
300
350
Passing Yards/Game vs Points/Game
Points/Game
Passing Yeards/Game
Upper 95%
Lower 95.0%
Upper 95.0%
6.6782896289 -7.9104435129 6.6782896289
0.1376750193 0.0705270432 0.1376750193
ng yards is a signifigant estimator for points per game
ll be -0.61608
e using linear regression so this is just where our intercept happens to fall and it is almost impossible to have ze
ne, the points per game will increase by 0.104101
The graph shows a strong positive relationship between these two variables. In other words, as passing yards per game increases, so does points per game (in general).
5
40
ero passing yards in a game
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
National Football League Data 2017 Season
Team Points/Game
Yards/Game
Opponent Yards/Game
Rushing Yards/Game
Arizona Cardinals 25.2
344.1
330.2
90
Atlanta Falcons 16.2
301
355.5
95
Baltimore Ravens 17.2
302
301.6
112.3
Buffalo Bills 15.8
277.1
362.9
112.5
Carolina Panthers 16.7
284.9
324.8
114
Chicago Bears 20.9
293.2
354.7
83.1
Cincinnati Bengals 23.8
348
348.8
97.3
Cleveland Browns 25.1
351.3
359.6
118.4
Dallas Cowboys 28.4
365.7
307.6
109.1
Denver Broncos 20
346.3
336
122.3
Detroit Lions 21.6
322.9
377.6
80.5
Green Bay Packers 27.2
370.7
313.3
99.8
Houston Texans 23.7
333.6
344.2
99.1
Indianapolis Colts 28.1
358.7
279.7
106.6
Jacksonville Jaguars 25.7
357.4
313.8
149.4
Kansas City Chiefs 14.1
276.8
319.4
78
Miami Dolphins 16.7
287.5
342.2
98.1
Minnesota Vikings 22.8
336.2
338.1
164.6
New England Patriots 36.8
411.2
288.3
115.6
New Orleans Saints 23.7
361.2
348.1
91.6
New York Giants 23.3
331.4
305
134.3
New York Jets 16.8
294.7
331.9
106.3
Oakland Raiders 17.7
294.8
341.6
130.4
Philadelphia Eagles 21
358.1
311.4
123.4
Pittsburgh Steelers 24.6
327.4
266.4
135.5
San Diego Chargers 25.8
315.2
320.3
127.4
San Francisco 49ers 13.7
237.3
346.2
92.3
Seattle Seahawks 24.6
348.9
321.8
101.2
St. Louis Rams 16.4
297.5
341.1
95.4
Tampa Bay Buccaneers 20.9
326.8
278.4
117
Tennessee Titans 18.8
311.7
291.6
131.8
Washington Football Team
20.9
333.4
305.3
116.9
Passing Yards/Game
Opponent Rushing Yards/Game
Opponent Passing Yards/Game
Penalties 254.1
97.9
232.3
137
206
127.1
228.4
105
189.7
79.3
222.3
107
164.6
124.6
238.4
78
170.9
110.7
214.1
95
210.1
122.9
231.8
111
250.8
118.3
230.4
90
232.9
129.5
230.1
114
256.6
94.6
213.1
104
224
142.6
193.4
90
242.4
119.4
258.2
100
270.9
102.9
210.4
113
234.4
114.1
230.1
82
252.1
106.9
172.8
67
208
100.3
213.5
76
198.8
130.6
188.9
101
189.4
153.5
188.7
91
171.6
74.1
264.1
86
295.7
98.3
190.1
78
269.6
102.9
245.3
68
197.1
97.7
207.3
77
188.4
134.8
197.1
63
164.4
145.9
195.8
120
234.7
95.8
215.6
83
191.9
89.9
176.5
80
187.8
107
213.3
94
145
118.5
227.7
97
247.8
102.8
219.1
59
202.1
115.3
225.8
94
209.8
107.9
170.5
81
179.9
92.4
199.2
101
216.4
91.3
214
90
Penalty Yards Interceptions
Fumbles
Passes Intercepted
Fumbles Recovered
1,128
18
11
24
12
891
16
12
15
9
873
17
6
14
26
633
18
12
14
7
801
14
16
17
12
839
16
17
21
13
670
19
16
20
10
868
17
10
20
9
815
19
10
19
5
610
14
16
15
14
676
17
18
22
14
1,006
19
9
15
9
636
11
14
21
17
515
22
15
14
5
594
20
10
8
13
697
14
8
20
13
732
14
8
16
13
662
15
16
14
16
690
19
12
9
6
581
13
10
18
12
652
15
10
20
14
486
15
6
19
6
864
18
8
20
17
649
11
8
15
12
651
11
14
14
8
761
30
18
16
8
702
12
10
17
17
428
20
14
13
11
794
18
9
28
9
614
16
19
8
12
773
22
12
17
17
751
14
10
11
18
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Consumer Transportation Survey
Vehicle Driven
Type
Satisfaction with vehicle
Gender Age
Truck
Domestic
Yes
Male
31
Truck
Domestic
Yes
Male
29
Truck
Foreign
No
Male
26
Truck
Domestic
No
Male
18
SUV
Domestic
Yes
Male
49
SUV
Foreign
Yes
Male
50
SUV
Domestic
Yes
Male
48
SUV
Foreign
Yes
Male
45
SUV
Domestic
Yes
Male
45
SUV
Domestic
Yes
Male
44
SUV
Foreign
Yes
Male
41
SUV
Domestic
Yes
Male
41
SUV
Foreign
No
Female
39
SUV
Foreign
Yes
Female
36
SUV
Foreign
Yes
Female
33
SUV
Domestic
Yes
Male
31
SUV
Domestic
No
Female
31
SUV
Domestic
No
Female
29
SUV
Domestic
Yes
Male
28
Mini Van
Domestic
Yes
Female
55
Mini Van
Domestic
No
Female
43
Mini Van
Domestic
Yes
Female
41
Mini Van
Foreign
Yes
Female
38
Mini Van
Foreign
Yes
Female
39
Mini Van
Domestic
No
Male
35
Mini Van
Domestic
Yes
Female
33
Mini Van
Foreign
Yes
Female
32
Mini Van
Foreign
Yes
Female
28
Car
Domestic
Yes
Female
21
Car
Domestic
No
Female
62
Car
Domestic
Yes
Female
61
Car
Foreign
Yes
Male
60
Car
Domestic
No
Male
58
Car
Domestic
Yes
Female
51
Car
Domestic
Yes
Female
47
Car
Domestic
No
Male
46
Car
Domestic
No
Male
44
Car
Foreign
No
Female
42
Car
Foreign
Yes
Female
41
Car
Domestic
No
Female
41
Car
Domestic
Yes
Female
39
Car
Foreign
Yes
Female
34
Car
Foreign
Yes
Male
33
Car
Foreign
Yes
Male
30
Car
Domestic
Yes
Female
29
Car
Foreign
Yes
Female
27
Car
Foreign
Yes
Female
26
Car
Domestic
No
Female
24
Car
Domestic
Yes
Female
22
Car
Foreign
No
Female
19
# of hours per week in vehicle
Miles driven per week
Number of Children Average number of riders
10
450
0
1
5
370
1
1
12
580
0
1
6
300
0
1
21
1000
0
1
16
840
2
1
15
1400
3
4
5
300
2
2
15
850
0
1
10
700
2
1
5
350
1
1
30
1500
4
3
6
280
1
1
4
400
0
1
3
420
0
1
10
675
0
1
15
800
1
1
4
300
1
1
3
400
1
1
8
400
0
2
10
700
2
3
10
720
1
2
10
450
4
5
15
1000
1
2
5
350
2
2
10
800
2
3
2
200
4
5
8
350
3
4
4
150
0
1
5
175
0
2
5
355
0
1
5
150
0
1
10
600
0
1
11
600
0
1
4
300
0
1
4
275
0
1
6
285
2
3
5
400
2
3
5
350
2
2
10
600
1
2
10
700
1
2
10
600
1
2
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
5
400
1
2
5
350
1
2
5
250
0
1
6
355
0
2
5
175
0
1
5
300
0
1
5
350
0
1
5
500
0
2
Miles from work
a.
Sample Mean
18
30
Sample Std Dev
13.23878
22
Sample Size
50
15
20
Hypothesis Testing (Two-Side
22
Step 1. Formulate null and alternative hypotheses
45
b
25
25
mu = b
vs.
20
25
40
Step 2. Set up a level of significance and a critical t-va
20
alpha
0.01
15
2.679952
17
20
25
Step 3. Calculate t-statistics
35
|t*|
3.7388244
50
20
15
Step 4. Draw a Conclusion
0
0
15
0
b.
Sample Mean
0.6
0
Sample Std Dev
0.4948717
0
Sample Size
50
0
5
Hypothesis Testing Using p-value (O
0
Step 1. Formulate null and alternative hypotheses
0
b
60%
0
mu >= b
vs.
15
10
35
Step 2. Set up a level of significance
40
alpha
0.01
21
18
16
Step 3. Calculate t-statistics and p-value
22
t*
0
23
p-value
0.5
34
45
16
Step 4. Draw a Conclusion
H
0
:
H
1
:
t
c
Since |t*| > t
c
, we can reject H0 and conclude that the sam
H
0
:
H
1
:
22
Since p-value > alpha, fail to reject H0 and conclude that th
18
not support H1.
19
23
11
4
3
4
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
ed Test)
alue
ne-Sided Test)
mu ≠
b
mple supports H1
mu <
b
he sample does
Related Documents
Related Questions
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7802268560.780226856
R Square
0.6087539470.608753947
Adjusted R Square
0.5870180550.587018055
Standard Error
6.7217061336.721706133
Observations
20
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
11
1265.3871265.387
1265.3871265.387
28.006928.0069
4.9549E-054.9549E-05
Residual
1818
813.264813.264
45.18145.181
Total
1919
2078.6512078.651
Step 2 of 2:
Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?
arrow_forward
A regression analysis was performed and the summary output is shown below.
Regression Statistics
Multiple R
0.7802268560.780226856
R Square
0.6087539470.608753947
Adjusted R Square
0.5870180550.587018055
Standard Error
6.7217061336.721706133
Observations
20
ANOVA
dfdf
SSSS
MSMS
F�
Significance F�
Regression
11
1265.3871265.387
1265.3871265.387
28.006928.0069
4.9549E-054.9549E-05
Residual
1818
813.264813.264
45.18145.181
Total
1919
2078.6512078.651
Step 1 of 2:
How many independent variables are included in the regression model
arrow_forward
What is correlation and regression? What information does it provide? Why is it important?
What does this regression analaysis tell us? What is the significance of the coeffecients?
arrow_forward
Verdadero=true
falso=false
arrow_forward
Conduct a global test on the set of independent variables. Interpret
Regression Statistics
Multiple R
0.87027387
R Square
0.75737661
Adjusted R Square
0.75615535
Standard Error
14.6932431
Observations
600
ANOVA
df
SS
MS
F
Significance F
Regression
3
401662.063
133887.354
620.160683
8.708E-183
Residual
596
128671.271
215.891394
Total
599
530333.333
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-3.9995369
3.05935528
-1.3073137
0.19161031
-10.007965
2.00889078
-10.007965
2.00889078
Annual Income
0.0002132
3.1402E-05
6.78944156
2.7269E-11
0.00015153
0.00027487
0.00015153
0.00027487
Married
45.7808695
1.20203164
38.0862434
8.444E-162
43.4201368
48.1416023
43.4201368
48.1416023
Male
21.9175699
1.20122625
18.2459964
2.0045E-59…
arrow_forward
In an ANOVA table for a multiple regression analysis, total variation is separated into
Multiple Choice
treatment and error variation
treatment and block variation
block and error variation
regression and residual variation
arrow_forward
Analysis of Variance
Source
DF
SS
MS
Regression
1
Residual Error
13
0.2364
Total
14
11.3240
What is the value of SSE (Sums of Square Residual Error)?
arrow_forward
**Please complete table**
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
The regression equation for…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
Using α = 0.01 to test the…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
For x1= 360 and x2 = 220, the…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
Using α = 0.01 to test the…
arrow_forward
A multiple regression analysis produced the following tables.
Summary Output
Regression Statistics
Multiple R
0.978724022
R Square
0.957900711
Adjusted R Square
0.952287472
Standard Error
67.67055418
Observations
18
ANOVA
df
SS
MS
F
Significance F
Regression
2
1562918.941
781459.5
170.6503
4.80907E-11
Residual
15
68689.55855
4579.304
Total
17
1631608.5
Coefficients
Standard Error
t Stat
P-value
Intercept
1959.709718
306.4905312
6.39403
1.21E-05
X1
-0.469657287
0.264557168
-1.77526
0.096144
X2
-2.163344882
0.278361425
-7.77171
1.23E-06
These results indicate that…
arrow_forward
Analyse the following regression
Regression Statistics
Multiple R
0.79716916
R Square
0.63547867
Adjusted R Square
0.63254686
Standard Error
198.375358
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
3
25589530
8529843.34
216.753245
2.2501E-81
Residual
373
14678587.9
39352.7826
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-97.981174
79.2847437
-1.2358137
0.21730553
-253.88228
57.9199296
-253.88228
57.9199296
EquivArea
3.5523258
0.15149067
23.4491399
2.2549E-75
3.254443
3.85020861
3.254443
3.85020861
Years
2.04629486
0.31770115
6.44094253
3.6636E-10
1.42158501
2.67100471
1.42158501
2.67100471
Condition
15.0379067
10.2144479
1.47221924
0.14180492
-5.0472147
35.1230282
-5.0472147
35.1230282
arrow_forward
A sales manager for an advertising agency believes there is a relationship between the number of contacts that a salesperson makes and the amount of sales dollars earned. A regression ANOVA shows the following results:ANOVA
df
SS
MS
F
Significance F
Regression
1.00
13,555.42
13,555.42
156.38
0.00
Residual
8.00
693.48
86.88
Total
9.00
14,248.90
What is the value of the standard error of estimate?
Multiple Choice
9.321
8.789
8.339
86.88
arrow_forward
Analysis of Variance
Source
DF
SS
MS
Regression
1
Residual Error
13
0.2364
Total
14
11.3240
What is the value for MSR (Mean Square for Regression)?
arrow_forward
Analyse the following regression model
Regression Statistics
Multiple R
0.7958395
R Square
0.63336051
Adjusted R Square
0.63139987
Standard Error
198.684728
Observations
377
ANOVA
df
SS
MS
F
Significance F
Regression
2
25504235.6
12752117.8
323.037801
3.2564E-82
Residual
374
14763882.3
39475.6211
Total
376
40268117.9
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
6.10606259
35.9370414
0.16991
0.86517279
-64.557919
76.770044
-64.557919
76.770044
EquivArea
3.62347902
0.1437982
25.1983622
1.3118E-82
3.34072471
3.90623332
3.34072471
3.90623332
Years
1.90428034
0.30317478
6.28113036
9.3418E-10
1.30813952
2.50042116
1.30813952
2.50042116
arrow_forward
What is the value of the Coefficient of Determination (Adjusted for Degrees of Freedom) ? (four decimal places, +/- 0.0050)
arrow_forward
Is there a significant relationship between time spent on Facebook and perceived loneliness? Explain your answer.
arrow_forward
Based on the ANOVA table given, is there enough evidence at the 0.050.05 level of significance to conclude that the linear relationship between the independent variables and the dependent variable is statistically significant?
ANOVA
Source
df
SS
MS
F
Significance F
Regression
3
212.987150
70.995717
1.092713
0.448523
Residual
4
259.887850
64.971963
Total
7
472.875000
arrow_forward
Would the Age be a significant predictor of Assessed Value?
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Related Questions
- A regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7802268560.780226856 R Square 0.6087539470.608753947 Adjusted R Square 0.5870180550.587018055 Standard Error 6.7217061336.721706133 Observations 20 ANOVA dfdf SSSS MSMS F� Significance F� Regression 11 1265.3871265.387 1265.3871265.387 28.006928.0069 4.9549E-054.9549E-05 Residual 1818 813.264813.264 45.18145.181 Total 1919 2078.6512078.651 Step 2 of 2: Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?arrow_forwardA regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R 0.7802268560.780226856 R Square 0.6087539470.608753947 Adjusted R Square 0.5870180550.587018055 Standard Error 6.7217061336.721706133 Observations 20 ANOVA dfdf SSSS MSMS F� Significance F� Regression 11 1265.3871265.387 1265.3871265.387 28.006928.0069 4.9549E-054.9549E-05 Residual 1818 813.264813.264 45.18145.181 Total 1919 2078.6512078.651 Step 1 of 2: How many independent variables are included in the regression modelarrow_forwardWhat is correlation and regression? What information does it provide? Why is it important? What does this regression analaysis tell us? What is the significance of the coeffecients?arrow_forward
- Verdadero=true falso=falsearrow_forwardConduct a global test on the set of independent variables. Interpret Regression Statistics Multiple R 0.87027387 R Square 0.75737661 Adjusted R Square 0.75615535 Standard Error 14.6932431 Observations 600 ANOVA df SS MS F Significance F Regression 3 401662.063 133887.354 620.160683 8.708E-183 Residual 596 128671.271 215.891394 Total 599 530333.333 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -3.9995369 3.05935528 -1.3073137 0.19161031 -10.007965 2.00889078 -10.007965 2.00889078 Annual Income 0.0002132 3.1402E-05 6.78944156 2.7269E-11 0.00015153 0.00027487 0.00015153 0.00027487 Married 45.7808695 1.20203164 38.0862434 8.444E-162 43.4201368 48.1416023 43.4201368 48.1416023 Male 21.9175699 1.20122625 18.2459964 2.0045E-59…arrow_forwardIn an ANOVA table for a multiple regression analysis, total variation is separated into Multiple Choice treatment and error variation treatment and block variation block and error variation regression and residual variationarrow_forward
- Analysis of Variance Source DF SS MS Regression 1 Residual Error 13 0.2364 Total 14 11.3240 What is the value of SSE (Sums of Square Residual Error)?arrow_forward**Please complete table**arrow_forwardA multiple regression analysis produced the following tables. Summary Output Regression Statistics Multiple R 0.978724022 R Square 0.957900711 Adjusted R Square 0.952287472 Standard Error 67.67055418 Observations 18 ANOVA df SS MS F Significance F Regression 2 1562918.941 781459.5 170.6503 4.80907E-11 Residual 15 68689.55855 4579.304 Total 17 1631608.5 Coefficients Standard Error t Stat P-value Intercept 1959.709718 306.4905312 6.39403 1.21E-05 X1 -0.469657287 0.264557168 -1.77526 0.096144 X2 -2.163344882 0.278361425 -7.77171 1.23E-06 The regression equation for…arrow_forward
- A multiple regression analysis produced the following tables. Summary Output Regression Statistics Multiple R 0.978724022 R Square 0.957900711 Adjusted R Square 0.952287472 Standard Error 67.67055418 Observations 18 ANOVA df SS MS F Significance F Regression 2 1562918.941 781459.5 170.6503 4.80907E-11 Residual 15 68689.55855 4579.304 Total 17 1631608.5 Coefficients Standard Error t Stat P-value Intercept 1959.709718 306.4905312 6.39403 1.21E-05 X1 -0.469657287 0.264557168 -1.77526 0.096144 X2 -2.163344882 0.278361425 -7.77171 1.23E-06 Using α = 0.01 to test the…arrow_forwardA multiple regression analysis produced the following tables. Summary Output Regression Statistics Multiple R 0.978724022 R Square 0.957900711 Adjusted R Square 0.952287472 Standard Error 67.67055418 Observations 18 ANOVA df SS MS F Significance F Regression 2 1562918.941 781459.5 170.6503 4.80907E-11 Residual 15 68689.55855 4579.304 Total 17 1631608.5 Coefficients Standard Error t Stat P-value Intercept 1959.709718 306.4905312 6.39403 1.21E-05 X1 -0.469657287 0.264557168 -1.77526 0.096144 X2 -2.163344882 0.278361425 -7.77171 1.23E-06 For x1= 360 and x2 = 220, the…arrow_forwardA multiple regression analysis produced the following tables. Summary Output Regression Statistics Multiple R 0.978724022 R Square 0.957900711 Adjusted R Square 0.952287472 Standard Error 67.67055418 Observations 18 ANOVA df SS MS F Significance F Regression 2 1562918.941 781459.5 170.6503 4.80907E-11 Residual 15 68689.55855 4579.304 Total 17 1631608.5 Coefficients Standard Error t Stat P-value Intercept 1959.709718 306.4905312 6.39403 1.21E-05 X1 -0.469657287 0.264557168 -1.77526 0.096144 X2 -2.163344882 0.278361425 -7.77171 1.23E-06 Using α = 0.01 to test the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman