Competing Nucleophiles Lab

Decent Essays
Title: Competing Nucleophiles (Exp 24, pp 211-221, pp 808-823, pp 836-842)

The purpose of this experiment is to determine the nucleophilic strength of chloride and bromide ions as it reacts with 1-butanol (n-butyl) and 2-methyl-2-propanol (t-butyl alcohol) under SN1 and SN2 conditions.
40 g of ice and approximately 30 ml of sulfuric acid is cautiously added to a 100 mL beaker respectively. Weigh 7.6 g of ammonium chloride and 14.0 g of ammonium bromide and place it in another beaker, crushing the lumps until a powdery mixture remains. The powdery mixture is then transferred to a 125 mL Erlenmeyer flask. Add the ammonium salts into the sulfuric acid mixture. Heat is applied to dissolve the salt. Once the
…show more content…
The solution that was performed in this experiment was to use sulfuric acid in order to form a protonated alcohol, so when the halogen or nucleophile back attacks the compound, water is displaced. Once the alcohol is protonated, the solution reacts in either an SN1 or SN2 mechanism. A unimolecular nucleophilic substitution or SN1 is a two-step reaction that occurs with a first order reaction. The rate-limiting step, which is the first step, forms a carbocation. This would be the slowest step in the mechanism. The addition of the nucleophile speeds up the reaction and stabilizes the carbocation. This reaction is more favorable with tertiary and sometimes secondary alkyl halides under strong basic or acidic conditions with secondary or tertiary alcohols. In this experiment, the t-butyl halide underwent an SN1 reaction. Nucleophiles do not necessarily effect the reaction because the nucleophile is considered zero order, (which makes it a first order reaction.) The ion that should have the strongest effect in an SN1 reaction is the bromide ion. The bromide ion should be stronger because it has a lower electronegativity than chloride as well as a smaller radius. In a bimolecular nucleophilic substitution or SN2 reaction, there is only one-step. This occurs because the addition of the nucleophile and the elimination of the leaving group spontaneously occur at the same time.
Get Access