Calibration of Volumetric Glassware
Nur Farah Nabilah Binti Ahmed Zhaini
Muhammad Imanuddin Bin Azman
Maisarah Binti Alias
Summary
In this experiment, The purpose of this experiment is to investigate the measurement of the actual volume contents of volumetric glassware. In the beginning of the experiment, the volumetric glassware should be clean and dry before used. The volumetric glassware, measuring cylinder and pipette should be handled with care and all the precautions were be taken during the experiment was held. This was to ensure to avoid any errors such as parallax error especially while reading water meniscus. This experiment must be repeated three times or more and take the average reading to get more
…show more content…
Whereas, volumetric flask has TC as its marking, meaning it is marked as a ‘to contain’.
A volumetric pipette & measuring cylinder can be calibrated by just weighing the water they deliver. As for volumetric flask, the weight of an empty flask is recorded. Next, weigh the flask after filling it with water to the mark.
After that, it is crucial to convert the mass to volume. The water density at a temperature will aid this process. The compliance of the Volume Occupied by 1.000g of Water Weigh in Air table is deemed necessary throughout the comparison.
In order to obtain the true volume of volumetric glassware holds, this formula will be used.
This experiment shall be repeated twice or more to enhance accuracy of the results obtained. Besides detecting systematic errors, this experiment would aid on the technique and understandings to the correct use of these equipments.
Materials
Transfer pipette, cleaning solution/detergent, beaker, thermometer, distilled water, top loading balance, 10ml volumetric pipette, 25mlvolumetric pipette, 100ml volumetric flask, 50ml measuring cylinder.
Procedure
1) Calibration of a volumetric pipette (10ml and 25ml)
a) Transfer pipette was obtained. The pipette was cleaned because distilled water does not drain uniformly. A cleaning solution or detergent was used to clean the pipette.
b) An empty beaker was weighted. Then, water was filled in the beaker. The temperature was recorded at uniform intervals.
c)
I took the graduated cylinder and started filling it up with water until the bottom of the meniscus was to the the 100.0 mL mark with the assistance of a dropper pipet. I then took the 13 x 100 mm test tube and slowly poured the water from the graduated cylinder into the test tube until it was full to the top. I then poured the water in the test tube out into the sink and put the graduated cylinder on the counter so I can get an accurate measurement of the lower meniscus to record on my data table. I once again followed the same procedure again filling a second test tube with water from the graduated cylinder then setting it on a straight surface to get an accurate measure of the volume to
because each of the objects displaced the water by 1 mL, their mass over that mL is their density.
The measuring cylinder was then used to accurately measure out 20 mL of water, which was then poured into the test tube that would be used for the experiment. The test tube was then placed into the clamp, which was then adjusted in order to make sure that the test tube was grasped firmly and would not fall out.
m = mass of water = density x volume = 1 x 26 = 26 grams
I will be doing this experiment to understand density of water compared to the volume of an object. D=m/v=mass/volume
Purpose: Weighing objects. Figuring out the density with an object by calculated volume and Archimedes’ Principle.
A. Water boils at 100°C at sea level. If the water in this experiment did not boil at 100°C, what
Procedure: I used a ruler, thermometer, and scale to take measurements. I used a graduated cylinder, short step pipet, scale, and ruler to determine volume and density. I used a volumetric flask, graduated pipet, pipet bulb, scale, and glass beaker to determine concentrations and densities of various dilutions.
To achieve a good volumetric technique, the experimenter needs to be able to correctly complete certain procedures.
The volume of a small test tube and a thin-stemmed pipet were determined in this section of the lab. Water was poured into a small test tube until the water reached the very top edge of the test tube. The test tube was then emptied into a plastic 25 mL graduated cylinder and volume was measured and recorded into data table 3. A think-stemmed pipet was completely filled with water. Drops were carefully counted and emptied into the empty plastic 25 mL graduated cylinder until the water level reached 1 mL. The number of drops in 1 mL was recorded into data table 3. The thin-stemmed pipet had a total volume of 4 mL and that was also recorded into data table 3.
Introduction: Accuracy and precision were the major aspects of the lab. Accuracy is how close the average of the measured values are to the actual value. Precision is the closeness of repeated measurements. In the lab, the aim was to get as close as possible with both accuracy and precision when determining the mass and volume of the spheres. The mass was determined by weighing the spheres on the Analytical Scale and Triple Beam Balance Scale. The volume is determined by measuring with a ruler and by water displacement. The standard
3. The volume of a fixed mass of a liquid sample increases as the temperature rises from 20 to
In the third stage of this experiment, the density of a liquid was determined and compared to known standards. A 100ml beaker was filled to about half-full with room-temperature distilled water. The temperature of the water in ◦C was recorded in order to compare to known standards later. A 50ml beaker was then weighed on a scale in order to determine mass and recorded. A sample of the distilled water with an exact volume of 10ml was then placed in the 50ml beaker using a volumetric pipette. The 50ml beaker with the 10ml of water was then weighed again and the initial mass of the beaker was subtracted from this mass to obtain the mass of the 10ml of water. With the volume and the mass of the water now known, density was calculated using d = m/V and recorded in g/ml. This process was then repeated to check for precision and compared to standard values to check for accuracy. Standard values were obtained from CRC Handbook, 88th Ed.
The weight of each 50ml beaker (used for weighing the mass of dissolved Potassium chloride after the evaporation of water) should be recorded. If the experimenter were to weigh the mass of one beaker and take it as a default mass, the latter may be a source of error.
For this experiment setup, following materials are needed such as a Kundt's tube apparatus, a meter stick, a piece of cloth, a thermometer,