
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN: 9780133594140
Author: James Kurose, Keith Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
COMPLETE-SUBGRAPH problem is defined as follows: Given a graph G = (V, E) and an integer k, output yes if and only if there is a subset of vertices S ⊆ V such that |S| = k, and every pair of vertices in S are adjacent (there is an edge between any pair of vertices).
How do I show that COMPLETE-SUBGRAPH problem is in NP?
How do I show that COMPLETE-SUBGRAPH problem is NP-Complete?
(Hint 1: INDEPENDENT-SET problem is a NP-Complete problem.)
(Hint 2: You can also use other NP-Complete problems to prove NP-Complete of COMPLETE-SUBGRAPH.)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- The Triangle Vertex Deletion problem is defined as follows: Given: an undirected graph G = (V, E) , with IVI=n, and an integer k>= 0. Is there a set of at most k vertices in G whose deletion results in deleting all triangles in G? (a) Give a simple recursive backtracking algorithm that runs in O(3^k * ( p(n))) where p(n) is a low-degree polynomial corresponding to the time needed to determine whether a certain vertex belongs to a triangle in G. (b) Selecting a vertex that belong to two different triangles can result in a better algorithm. Using this idea, provide an improved algorithm whose running time is O((2.562^n) * p(n)) where 2.652 is the positive root of the equation x^2=x+4arrow_forwardLet G be a graph with V vertices and E edges. One can implement Kruskal’s Algorithm to run in O(E log V) time, and Prim’s Algorithm to run in O(E + V log V ) time. If G is a dense graph with an extremely large number of vertices, determine which algorithm would output the minimum-weight spanning tree more quickly. Clearly justify your answer.arrow_forwardLet G be a graph with n vertices. The k-coloring problem is to decide whether the vertices of G can be labeled from the set {1, 2, ..., k} such that for every edge (v,w) in the graph, the labels of v and w are different. Is the (n-4)-coloring problem in P or in NP? Give a formal proof for your answer. A 'Yes' or 'No' answer is not sufficient to get a non-zero mark on this question.arrow_forward
- Let G be a graph with n vertices representing a set of gamers. There is an edge between two nodes if the corresponding gamers are friends. You want to partition the gamers into two disjoint groups such that no two gamers in the same group are friends. Is the problem in P or in NP? Give a formal proof for your answer. A 'Yes' or 'No' answer is not sufficient to get a non-zero mark on this question.arrow_forwardIn the decision version of the Clique problem you are given a non-empty graph G = (V,E) and a positive integer k and asked whether G has a complete subgraph (or clique) of size k (i.e., k vertices that induce a complete subgraph). Give the pseudocode of a recursive backtracking algorithm for the problem, and analyze your algorithm by providing a worst-case recurrence. Can you guarantee a worst-case running time in O(1.466^n)? Prove your answerarrow_forwardPlease show written work with answer!! An independent set in a graph is a set of vertices no two of which are adjacent to each other. A clique is a complete subgraph of a given graph. This means that there is an edge between any two nodes in the subgraph. The maximal clique is the complete subgraph of a given graph which contains the maximum number of nodes. We know that independent set is a NP complete problem. Transform the independent set to max clique (in polynomial time) to show that Max Clique is also NParrow_forward
- True or False (If your answer to the question is "False", explain why, and provide correction when possible). (a) Let h(n) be the heuristics for the node n, h(m) be the heuristics for the node m, d(m,n) be the actual minimal cost from node m to n in a graph. A* satisfies the monotone restriction iff d(m,n) <= |h(n)-h(m)|. (b) If an A* heuristics is admissible then it satisfies the monotone restriction. (c) Best-first search guarantees optimality in its returned solution. (d) Least-cost-first search guarantees optimality in its returned solution. (e) If all edges are with unit cost, then Breadth-first search guarantees optimality in its returned solution.arrow_forwardThe third-clique problem is about deciding whether a given graph G = (V, E) has a clique of cardinality at least |V |/3.Show that this problem is NP-complete.arrow_forward5. (This question goes slightly beyond what was covered in the lectures, but you can solve it by combining algorithms that we have described.) A directed graph is said to be strongly connected if every vertex is reachable from every other vertex; i.e., for every pair of vertices u, v, there is a directed path from u to v and a directed path from v to u. A strong component of a graph is then a maximal subgraph that is strongly connected. That is all vertices in a strong component can reach each other, and any other vertex in the directed graph either cannot reach the strong component or cannot be reached from the component. (Note that we are considering directed graphs, so for a pair of vertices u and v there could be a path from u to v, but no path path from v back to u; in that case, u and v are not in the same strong component, even though they are connected by a path in one direction.) Given a vertex v in a directed graph D, design an algorithm for com- puting the strong connected…arrow_forward
- Can you help me solve this exercise? Please note that the greedy approach described in the advice paragraph does not work.arrow_forwardIf A is NP-complete, and A has a polynomial time algorithm, then there is a polynomial time algorithm to find the largest clique in a directed. A clique in a graph G(V, E) is a subset of vertices V’ such that there is an edge (u,v) in E between every two vertices u and v in V’. For example, the four vertices u2, u3,u5, and u6 form the largest clique in the graph below.arrow_forwardA graph is biconnected if every pair of vertices is connectedby two disjoint paths. An articulation point in a connected graph is a vertex that woulddisconnect the graph if it (and its adjacent edges) were removed. Prove that any graphwith no articulation points is biconnected. Hint : Given a pair of vertices s and t and apath connecting them, use the fact that none of the vertices on the path are articulationpoints to construct two disjoint paths connecting s and t.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Computer Networking: A Top-Down Approach (7th Edi...Computer EngineeringISBN:9780133594140Author:James Kurose, Keith RossPublisher:PEARSONComputer Organization and Design MIPS Edition, Fi...Computer EngineeringISBN:9780124077263Author:David A. Patterson, John L. HennessyPublisher:Elsevier ScienceNetwork+ Guide to Networks (MindTap Course List)Computer EngineeringISBN:9781337569330Author:Jill West, Tamara Dean, Jean AndrewsPublisher:Cengage Learning
- Concepts of Database ManagementComputer EngineeringISBN:9781337093422Author:Joy L. Starks, Philip J. Pratt, Mary Z. LastPublisher:Cengage LearningPrelude to ProgrammingComputer EngineeringISBN:9780133750423Author:VENIT, StewartPublisher:Pearson EducationSc Business Data Communications and Networking, T...Computer EngineeringISBN:9781119368830Author:FITZGERALDPublisher:WILEY

Computer Networking: A Top-Down Approach (7th Edi...
Computer Engineering
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:PEARSON

Computer Organization and Design MIPS Edition, Fi...
Computer Engineering
ISBN:9780124077263
Author:David A. Patterson, John L. Hennessy
Publisher:Elsevier Science

Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:9781337569330
Author:Jill West, Tamara Dean, Jean Andrews
Publisher:Cengage Learning

Concepts of Database Management
Computer Engineering
ISBN:9781337093422
Author:Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:Cengage Learning

Prelude to Programming
Computer Engineering
ISBN:9780133750423
Author:VENIT, Stewart
Publisher:Pearson Education

Sc Business Data Communications and Networking, T...
Computer Engineering
ISBN:9781119368830
Author:FITZGERALD
Publisher:WILEY