Part D Ag has an anomalous electron configuration. Write the observed electron configuration of Ag. Express your answer in complete form in order of orbital filling. For example, 1s° 25° should be entered as 15^225^2. • View Available Hint(s)

Chemistry & Chemical Reactivity
10th Edition
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Chapter7: The Structure Of Atoms And Periodic Trends
Section: Chapter Questions
Problem 49GQ: The magnet in the following photo is made from neodymium, iron, and boron. A magnet mode of on alloy...
icon
Related questions
Question
Anomalous electron configurations
Some atoms, such as some transition metals and some elements in the lanthanide and actinide series, do not adhere strictly to Hund's rule and Pauli's principle. The reason the anomalies are observed is the unusual stability of both half-filled and
completely filled subshells. This behavior can be explained with an example of the chromium atom. Using Hund's rule and Pauli's principle, you can write the expected electron configuration of the Cr atom that strictly follows these rules as
1s? 2s? 2pº 3s? 3p 4s? 3d4 . However, by moving an electron from the 4s orbital to the 3d orbital you obtain a half-filled 3d orbital. This half-filled orbital is more stable than the combination of the filled 4s orbital and the partially filled 3d orbital.
Thus, the observed electron configuration of the Cr atom is 1s? 2s 2p® 3s² 3p® 4s' 3d³.
Part D
Ag has an anomalous electron configuration. Write the observed electron configuration of Ag.
Express your answer in complete form in order of orbital filling. For example, 1s 2s should be entered as 1s^22s^2.
• View Available Hint(s)
Transcribed Image Text:Anomalous electron configurations Some atoms, such as some transition metals and some elements in the lanthanide and actinide series, do not adhere strictly to Hund's rule and Pauli's principle. The reason the anomalies are observed is the unusual stability of both half-filled and completely filled subshells. This behavior can be explained with an example of the chromium atom. Using Hund's rule and Pauli's principle, you can write the expected electron configuration of the Cr atom that strictly follows these rules as 1s? 2s? 2pº 3s? 3p 4s? 3d4 . However, by moving an electron from the 4s orbital to the 3d orbital you obtain a half-filled 3d orbital. This half-filled orbital is more stable than the combination of the filled 4s orbital and the partially filled 3d orbital. Thus, the observed electron configuration of the Cr atom is 1s? 2s 2p® 3s² 3p® 4s' 3d³. Part D Ag has an anomalous electron configuration. Write the observed electron configuration of Ag. Express your answer in complete form in order of orbital filling. For example, 1s 2s should be entered as 1s^22s^2. • View Available Hint(s)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Quantum Mechanical Model of Atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning