Q2) Sulfur dioxide (A) diffuses through a stagnant layer of air (B) of 2 cm thickness at 45°C and 1.2 bar total pressure. The partial pressures of SO2 on the two sides of the air layer are = 0.85 bar and PAL =0.15 bar, respectively. Considering Air is a non-diffusing component and Dso2-Air = 3.5×10-$ m²/sec, calculate: i- The molar flux of SO2 PAO ii- The velocities of the individual components with respect to a stationary observer. iii- The molar and the mass average velocities of the components. iv- The molar flux of SO2 with respect to an observer moving with the mass average velocity.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
icon
Concept explainers
Question

Sulfur dioxide (A) diffuses through a stagnant layer of air (B) of 2 cm thickness at 45oC and 1.2 bar total pressure. The partial pressures of SO2 on the two sides of the air layer are PA0 = 0.85 bar and PAL =0.15 bar, respectively. Considering Air is a non-diffusing component and DSO2-Air = 3.5×10-5 m2/sec, calculate:

 

1) The molar flux of SO2 with respect to an observer moving with the mass average velocity.

Q2)
Sulfur dioxide (A) diffuses through a stagnant layer of air (B) of 2 cm thickness at 45°C
and 1.2 bar total pressure. The partial pressures of SO2 on the two sides of the air layer are
PAO = 0.85 bar and PAL =0.15 bar, respectively. Considering Air is a non-diffusing
component and Dso2-Air = 3.5×10$ m²/sec, calculate:
i- The molar flux of SO2
ii- The velocities of the individual components with respect to a stationary observer.
iii- The molar and the mass average velocities of the components.
iv- The molar flux of SO2 with respect to an observer moving with the mass average
velocity.
Transcribed Image Text:Q2) Sulfur dioxide (A) diffuses through a stagnant layer of air (B) of 2 cm thickness at 45°C and 1.2 bar total pressure. The partial pressures of SO2 on the two sides of the air layer are PAO = 0.85 bar and PAL =0.15 bar, respectively. Considering Air is a non-diffusing component and Dso2-Air = 3.5×10$ m²/sec, calculate: i- The molar flux of SO2 ii- The velocities of the individual components with respect to a stationary observer. iii- The molar and the mass average velocities of the components. iv- The molar flux of SO2 with respect to an observer moving with the mass average velocity.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Molecular Motion in Gases
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY