
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN: 9780134463216
Author: Robert F. Blitzer
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Topic Video
Question
Set up the constraints and objective function for the following linear programming problem. A discount store is offered two styles of slightly damaged coffee tables. The store has storage space for 60 tables and 105 hours of labor for repairing the defects. Each table of style A requires 1 hour of labor to repair, and each table of style B requires 2 hours. Style A is priced at $53 each, and style B at $40 each. How many of each style should be ordered to maximize gross sales? (Let x represent the number of tables of style A, y the number of tables of style B, and z the gross sales in dollars.)
storage space |
|
|
labor |
|
|
x ≥ 0, y ≥ 0 |
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Formulate but do not solve the following exercise as a linear programming problem.National Business Machines manufactures x model A fax machines and y model B fax machines. Each model A cost $120 to make, and each model B costs $150. The profits are $30 for each model A and $30 for each model B fax machine. If the total number of fax machines demanded per month does not exceed 1900 and the company has earmarked not more than $600,000/month for manufacturing costs, how many units of each model should National make each month to maximize its monthly profits P in dollars ? Maximize P = subject to the constraints manufacturing costs number produced x ≥ 0 y ≥ 0arrow_forwardSolve the following linear programming problem. You are taking two dietary supplements daily: Supplement A and Supplement B. An ounce of supplement A contains 9 units of calcium, 8 units of vitamin D, and 5 units of sodium. An ounce of supplement B contains 2 units of calcium, 4 units of vitamin D, and 3 units of sodium. Your goal is to get at least 90 units of calcium and at least 120 units of vitamin D from the supplements daily, while at the same time reducing the amount of sodium that you will get. How many ounces of each supplement should you take daily to reach your goals? Ounces of Supplement A = Blank 1. Fill in the blank, read surrounding text. Ounces of Supplement B = Blank 2. Fill in the blank, read surrounding text. How many units of sodium will you get daily under these circumstances? Units of Sodium = Blank 3. Fill in the blank, read surrounding text.arrow_forwardFormulate but do not solve the following exercise as a linear programming problem. A financier plans to invest up to $400,000 in two projects. Project A yields a return of 10% on the investment of x dollars, whereas Project B yields a return of 13% on the investment of y dollars. Because the investment in Project B is riskier than the investment in Project A, the financier has decided that the investment in Project B should not exceed 40% of the total investment. How much should she invest in each project to maximize the return on her investment P in dollars? MaximizeP= subject to the constraints ? amount available for investment? allocation of funds?arrow_forward
- Use Excel to solve the linear programming problem.At one of its factories, a manufacturer of televisions makes one or more of four models of HD units (without cases): a 20-in. LCD, a 42-in. LCD, a 42-in. plasma, and a 50-in. plasma. The assembly and testing time requirements for each model are shown in the table, together with the maximum amounts of time available per week for assembly and testing. In addition to these constraints, the supplier of cases indicated that it would supply no more than 290 cases per week and that of these, no more than 40 could be for the 20-in. LCD model.Use the profit for each television shown in the table to find the number of completed models of each type that should be produced to obtain the maximum profit for the week. Find the maximum profit. 20-in. LCD sets 42-in. LCD sets 42-in. plasma sets 50-in. plasma sets profit $ 20-in.LCD 42-in.LCD 42-in.Plasma 50-in.Plasma TotalAvailable Assembly time…arrow_forwardFormulate but do not solve the following exercise as a linear programming problem. A nutritionist at the Medical Center has been asked to prepare a special diet for certain patients. She has decided that the meals are to be prepared from Foods A and B and that the meals should contain a minimum of 390 mg of calcium, 10 mg of iron, and 40 mg of vitamin C. Each ounce of Food A contains 25 mg of calcium, 2.5 mg of iron, 2 mg of vitamin C, and 6 mg of cholesterol. Each ounce of Food B contains 25 mg of calcium, 0.5 mg of iron, 5 mg of vitamin C, and 5 mg of cholesterol. How many ounces of each type of food should be used in a meal so that the cholesterol content C (in mg) is minimized and the minimum requirements of calcium, iron, and vitamin C are met? Minimize C = subject to the constraints calcium iron vitamin C x ≥ 0 y ≥ 0arrow_forwardState the linear programming problem in mathematical terms, identifying the objective function and the constraints.A firm makes products A and B. Product A takes 3 hours each on machine L and machine M; product B takes 3 hours on L and 2 hours on M. Machine L can be used for 13 hours and M for 8 hours. Profit on product A is $7 and $10 on B. Maximize profit.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education