The Fermi energy of a doped semiconductor is different from that of a pure semiconductor. Consider silicon, where the energy difference between the top of the valence band and the bottom of the conduction band is 1.11 eV. At a temperature of 300 K the Fermi energy of pure silicon lies approximately between the bottom of the conduction band and the top of the valence band. (a) Calculate the probability of occupying a state at the bottom of the conduction band. Consider now that the silicon has been doped with donor atoms that introduce a state at 0.15 eV below the conduction band background. Doping also caused the Fermi level to be shifted to an energy 0.11 eV below the bottom of the conduction band. (b) Under these conditions, calculate the occupancy of the lower end of the conduction band. (c) Calculate the probability that the level introduced by the donor impurities is occupied.

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter12: The Solid State
Section: Chapter Questions
Problem 13P
icon
Related questions
Question

The Fermi energy of a doped semiconductor is different from that of a pure semiconductor. Consider silicon, where the energy difference between the top of the valence band and the bottom of the conduction band is 1.11 eV. At a temperature of 300 K the Fermi energy of pure silicon lies approximately between the bottom of the conduction band and the top of the valence band. (a) Calculate the probability of occupying a state at the bottom of the conduction band. Consider now that the silicon has been doped with donor atoms that introduce a state at 0.15 eV below the conduction band background. Doping also caused the Fermi level to be shifted to an energy 0.11 eV below the bottom of the conduction band. (b) Under these conditions, calculate the occupancy of the lower end of the conduction band. (c) Calculate the probability that the level introduced by the donor impurities is occupied.

Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Band Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning