MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
Bartleby Related Questions Icon

Related questions

Question

Please assist with all questions and add R script as well.

**Understanding and Implementing Cumulative Distribution Function (CDF) in R**

The function \( F(x) = \frac{1}{32}(6 - x) \cdot x^2 \) for \( 0 \leq x \leq 4 \) and \( 0 \) for \( x < 0 \) and \( 1 \) for \( x > 4 \) is the cumulative distribution function (CDF) of a random variable \( X \).

**Using R:**

**a) Using R, create a user-defined function for \( F \) (named F) in the interval \([0, 4]\).**
```R
F <- function(x) {
  if(x < 0) return(0)
  if(x > 4) return(1)
  return((1/32) * (6 - x) * x^2)
}
```

**b) Using this \( F \), find the probability that \( X < 2.3 \).**
```R
prob_X_less_than_2_3 <- F(2.3)
print(prob_X_less_than_2_3)
```

**c) Using \( F \), find the probability that \( X > 3.7 \).**
```R
prob_X_greater_than_3_7 <- 1 - F(3.7)
print(prob_X_greater_than_3_7)
```

**d) Using \( F \), find the probability that \( 2.3 < X < 3.7 \).**
```R
prob_X_between_2_3_and_3_7 <- F(3.7) - F(2.3)
print(prob_X_between_2_3_and_3_7)
```

**e) What is the probability density function (in R code) for \( X \) between 0 and 4?**
```R
f <- function(x) {
  if(x < 0 || x > 4) return(0)
  return((1/16) * x * (3 - x))
}
```

**f) Paste your R script in the following box**

```R
F <- function(x) {
  if(x < 0) return(0)
  if(x > 4) return(1)
  return((1/32) * (6 - x) * x^
expand button
Transcribed Image Text:**Understanding and Implementing Cumulative Distribution Function (CDF) in R** The function \( F(x) = \frac{1}{32}(6 - x) \cdot x^2 \) for \( 0 \leq x \leq 4 \) and \( 0 \) for \( x < 0 \) and \( 1 \) for \( x > 4 \) is the cumulative distribution function (CDF) of a random variable \( X \). **Using R:** **a) Using R, create a user-defined function for \( F \) (named F) in the interval \([0, 4]\).** ```R F <- function(x) { if(x < 0) return(0) if(x > 4) return(1) return((1/32) * (6 - x) * x^2) } ``` **b) Using this \( F \), find the probability that \( X < 2.3 \).** ```R prob_X_less_than_2_3 <- F(2.3) print(prob_X_less_than_2_3) ``` **c) Using \( F \), find the probability that \( X > 3.7 \).** ```R prob_X_greater_than_3_7 <- 1 - F(3.7) print(prob_X_greater_than_3_7) ``` **d) Using \( F \), find the probability that \( 2.3 < X < 3.7 \).** ```R prob_X_between_2_3_and_3_7 <- F(3.7) - F(2.3) print(prob_X_between_2_3_and_3_7) ``` **e) What is the probability density function (in R code) for \( X \) between 0 and 4?** ```R f <- function(x) { if(x < 0 || x > 4) return(0) return((1/16) * x * (3 - x)) } ``` **f) Paste your R script in the following box** ```R F <- function(x) { if(x < 0) return(0) if(x > 4) return(1) return((1/32) * (6 - x) * x^
### Probability Density Function and Computations

The probability density function of random variable \( X \) is given by:

\[ f(x) = \frac{3}{500}(10x - x^2) \quad \text{for} \quad 0 \leq x \leq 10 \quad \text{and} \quad 0 \quad \text{otherwise.} \]

Perform the following computations using the R `integrate` function:

#### a) Find the probability that \( X > 6 \)
\[ \boxed{ }
\]

#### b) Find the probability that \( 3 < X < 7 \)
\[ \boxed{ }
\]

#### c) Find the expected value of \( X \)
\[ \boxed{ }
\]

#### d) Find the variance of \( X \)
\[ \boxed{ }
\]

#### e) Find the standard deviation of \( X \)
\[ \boxed{ }
\]

#### f) Find the probability that \( X \) is within 0.50 standard deviations of its expected value
\[ \boxed{ }
\]

#### g) In the following paste your R script for this problem
```R
# Your R script here
```
expand button
Transcribed Image Text:### Probability Density Function and Computations The probability density function of random variable \( X \) is given by: \[ f(x) = \frac{3}{500}(10x - x^2) \quad \text{for} \quad 0 \leq x \leq 10 \quad \text{and} \quad 0 \quad \text{otherwise.} \] Perform the following computations using the R `integrate` function: #### a) Find the probability that \( X > 6 \) \[ \boxed{ } \] #### b) Find the probability that \( 3 < X < 7 \) \[ \boxed{ } \] #### c) Find the expected value of \( X \) \[ \boxed{ } \] #### d) Find the variance of \( X \) \[ \boxed{ } \] #### e) Find the standard deviation of \( X \) \[ \boxed{ } \] #### f) Find the probability that \( X \) is within 0.50 standard deviations of its expected value \[ \boxed{ } \] #### g) In the following paste your R script for this problem ```R # Your R script here ```
Expert Solution
Check Mark
Still need help?
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

every single answer for this question along with the code was wrong.  

Solution
Bartleby Expert
by Bartleby Expert
SEE SOLUTION
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

every single answer for this question along with the code was wrong.  

Solution
Bartleby Expert
by Bartleby Expert
SEE SOLUTION
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman