Water from a reservoir is pumped over a hill through a 450 mm diameter and an absolute pressure of 1.0 kg/cm2 is maintained at the summit. Water discharge is 30 m above the reservoir. The quantity pumped is 0.5 m3/s. Frictional losses in the discharge and suction pipe, and pump is equivalent to 1.5 m. The speed of pump is 800 rpm. Determine the following: a.Water power of the pump b.New value of discharge if the speed of the pump is increased to 1000 rpm c.New value of head if the speed of the pump is increased to 1000 rpm

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Water from a reservoir is pumped over a hill through a 450 mm diameter and an absolute pressure of 1.0 kg/cm2 is maintained at the summit. Water discharge is 30 m above the reservoir. The quantity pumped is 0.5 m3/s. Frictional losses in the discharge and suction pipe, and pump is equivalent to 1.5 m. The speed of pump is 800 rpm. Determine the following: a.Water power of the pump b.New value of discharge if the speed of the pump is increased to 1000 rpm c.New value of head if the speed of the pump is increased to 1000 rpm d.New value of power if the speed of the pump is increased to 1000 rpm Please solving using the methodology (Given, requires, schematic diagram, solution and discussion)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY