Bartleby Sitemap - Textbook Solutions

All Textbook Solutions for Principles of Physics: A Calculus-Based Text

A crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?13P14PA block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.1516PA smooth circular hoop with a radius of 0.500 m is placed flat on the floor. A 0.400-kg particle slides around the inside edge of the hoop. The particle is given an initial speed of 8.00 m/s. After one revolution, its speed has dropped to 6.00 m/s because of friction with the floor. (a) Find the energy transformed from mechanical to internal in the particlehoopfloor system as a result of friction in one revolution. (b) What is the total number of revolutions the particle makes before stopping? Assume the friction force remains constant during the entire motion.18P19PAs shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20A 5.00-kg block is set into motion up an inclined plane with an initial speed of i = 8.00 m/s (Fig. P7.21). The block comes to rest after traveling d = 3.00 m along the plane, which is inclined at an angle of = 30.0 to the horizontal. For this motion, determine (a) the change in the blocks kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant), (d) What is the coefficient of kinetic friction? Figure P7.21The coefficient of friction between the block of mass ml = 3.00 kg and the surface in Figure P7.22 is k = 0.400. The system starts from rest. What is the speed of the ball of mass, m2 = 5.00 kg when it has fallen a distance h = 1.50 m? Figure P7.2223P24P25P26PA child of mass m starts from rest and slides without friction from a height h along a slide next to a pool (Fig. P7.27). She is launched from a height h/5 into the air over the pool. We wish to find the maximum height she reaches above the water in her projectile motion. (a) Is the childEarth system isolated or nonisolated? Why? (b) Is there a nonconservative force acting within the system? (c) Define the configuration of the system when the child is at the water level as having zero gravitational potential energy. Express the total energy of the system when the child is at the top of the waterslide. (d) Express the total energy of the system when the child is at the launching point. (e) Express the total energy of the system when the child is at the highest point in her projectile motion. (f) From parts (c) and (d), determine her initial speed vi at the launch point in terms of g and h. (g) From parts (d), (e), and (f), determine her maximum airborne height ymax in terms of h and the launch angle . (h) Would your answers be the same if the waterslide were not frictionless? Explain. Figure P7.27The electric motor of a model train accelerates the train from rest to 0.620 m/s in 21.0 ms. The total mass of the train is 875 g. (a) Find the minimum power delivered to the train by electrical transmission from the metal rails during the acceleration. (b) Why is it the minimum power?29P30P31PSewage at a certain pumping station is raised vertically by 5.49 m at the rate of 1 890 000 liters each day. The sewage, of density 1 050 kg/m3, enters and leaves the pump at atmospheric pressure and through pipes of equal diameter. (a) Find the output mechanical power of the lift station. (b) Assume an electric motor continuously operating with average power 5.90 kW runs the pump. Find its efficiency.33P34P35P36P37P38P39P40PA loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 30.0 above the horizontal. The car accelerates uniformly to a speed of 2.20 m/s in 12.0 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? (b) What maximum power must the winch motor provide? (c) What total energy has transferred out of the motor by work by the time the car moves off the end of the track, which is of length 1 250 m?42PA certain automobile engine delivers 2.24 104 W (30.0 hp) to its wheels when moving at a constant speed of 27.0 m/s ( 60 mi/h). What is the resistive force acting on the automobile at that speed?44PA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.46P47P48P49P50P51P52PJonathan is riding a bicycle and encounters a hill of height 7.30 m. At the base of the hill, he is traveling at 6.00 m/s. When he reaches the top of the hill, he is traveling at 1.00 m/s. Jonathan and his bicycle together have a mass of 85.0 kg. Ignore friction in the bicycle mechanism and between the bicycle tires and the road. (a) What is the total external work done on the system of Jonathan and the bicycle between the time he starts up the hill and the time he reaches the top? (b) What is the change in potential energy stored in Jonathans body during this process? (c) How much work does Jonathan do on the bicycle pedals within the JonathanbicycleEarth system during this process?54PA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P7.55. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P7.5556P57P58P59P60P61P62PMake an order-of-magnitude estimate of your power out-put as you climb stairs. In your solution, state the physical quantities you take as data and the values you measure or estimate for them. Do you consider your peak power or your sustainable power?64P65PReview. As a prank, someone has balanced a pumpkin at the highest point of a grain silo. The silo is topped with a hemispherical cap that is frictionless when wet. The line from the center of curvature of the cap to the pumpkin makes an angle i = 0 with the vertical. While you happen to be standing nearby in the middle of a rainy night, a breath of wind makes the pumpkin start sliding downward from rest. It loses contact with the cap when the line from the center of the hemisphere to the pumpkin makes a certain angle with the vertical. What is this angle?Review. The mass of a car is 1 500 kg. The shape of the cars body is such that its aerodynamic drag coefficient is D = 0.330 and its frontal area is 2.50 m2. Assuming the drag force is proportional to 2 and ignoring other sources of friction, calculate the power required to maintain a speed of 100 km/h as the car climbs a long hill sloping at 3.20.A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the springs unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest. Figure P7.68A childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.6970P71P72PA block of mass m1 = 20.0 kg is connected to a block of mass m2 = 30.0 kg by a massless string that passes over a light, frictionless pulley. The 30.0-kg block is connected to a spring that has negligible mass and a force constant of k = 250 N/m as shown in Figure P7.73. The spring is un-stretched when the system is as shown in the figure, and the incline is frictionless. The 20.0-kg block is pulled a distance h = 20.0 cm down the incline of angle = 40.0 (so that the 30.0-kg block is 40.0 cm above the floor) and released from rest. Find the speed of each block when the 30.0-kg block is 20.0 cm above the floor (that is, when the spring is unstretched). Figure P7.7374P75P76P77P78PA block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?A pendulum, comprising a light string of length L and a small sphere, swings in the vertical plane. The string hits a peg located a distance d below the point of suspension (Fig. P7.80). (a) Show that if the sphere is released from a height below that of the peg, it will return to this height after the string strikes the peg. (b) Show that if the pendulum is released from rest at the horizontal position ( = 90) and is to swing in a complete circle centered on the peg, the minimum value of d must be 3L/5. Figure P7.80Jane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.A roller-coaster car shown in Figure P7.82 is released from rest from a height h and then moves freely with negligible friction. The roller-coaster track includes a circular loop of radius R in a vertical plane. (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop in terms of R. (b) Now assume the release point is at or above the minimum required height. Show that the normal force on the car at the bottom of the loop exceeds the normal force at the top of the loop by six times the cars weight. The normal force on each rider follows the same rule. Such a large normal force is dangerous and very uncomfortable for the riders. Roller coasters are therefore not built with circular loops in vertical planes. Figure P5.22 (page 149) shows an actual design.83PTwo objects have equal kinetic energies. How do the magnitudes of their momenta compare? (a) p1 p2 (b) p1 = p2 (c) p1 p2 (d) not enough information to tellYour physical education teacher throws a baseball to you at a certain speed and you catch it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass of the baseball. You are given the following choices: You can have the medicine ball thrown with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank these choices from easiest to hardest to catch.8.3QQA table-tennis ball is thrown at a stationary bowling ball. The table-tennis ball makes a one-dimensional elastic collision and bounces back along the same line. Compared with the bowling ball after the collision, does the table-tennis ball have (a) a larger magnitude of momentum and more kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy, (c) a larger magnitude of momentum and less kinetic energy, (d) a smaller magnitude of momentum and less kinetic energy, or (e) the same magnitude of momentum and the same kinetic energyA baseball bat of uniform denisty is cut at the location of its center of mass as shown in Figure 8.17. Which piece has the smaller mass? (a) the piece on the right (b) the piece on the left (c) both pieces have the same mass (d) impossible to determine Figure 8.17 (Quick Quiz 8.5) A baseball bat cut at the location of its center of mass.8.6QQ1OQA head-on, elastic collision occurs between two billiard balls of equal mass. If a red ball is traveling to the right with speed v and a blue ball is traveling to the left with speed 3v before the collision, what statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) The red ball travels to the left with speed v, while the blue ball travels to the right with speed 3v. (b) The red ball travels to the left with speed v, while the blue ball continues to move to the left with a speed 2v. (c) The red ball travels to the left with speed 3v, while the blue ball travels to the right with speed v. (d) Their final velocities cannot be determined because momentum is not conserved in the collision. (e) The velocities cannot be determined without knowing the mass of each ball.3OQA 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 s, what average force acts on the ball? (a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 NA 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sA 2-kg object moving to the right with a speed of 4 m/s makes a head-on, elastic collision with a 1-kg object that is initially at rest. The velocity of the 1-kg object after the collision is (a) greater than 4 m/s, (b) less than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impossible to say based on the information provided.The momentum of an object is increased by a factor of 4 in magnitude. By what factor is its kinetic energy changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1The kinetic energy of an object is increased by a factor of 4. By what factor is the magnitude of its momentum changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 19OQ10OQ11OQ12OQ13OQA ball is suspended by a string that is tied to a fixed point above a wooden block standing on end. The ball is pulled back as shown in Figure OQ8.14 and released. In trial A, the ball rebounds elastically from the block. In trial B, two-sided tape causes the ball to stick to the block. In which case is the ball more likely to knock the block over? (a) It is more likely in trial A. (b) It is more likely in trial B. (c) It makes no difference. (d) It could be either case, depending on other factors. Figure OQ8.14A massive tractor is rolling down a country road. In a perfectly inelastic collision, a small sports car runs into the machine from behind. (i) Which vehicle experiences a change in momentum of larger magnitude? (a) The car does. (b) The tractor does. (c) Their momentum changes are the same size. (d) It could be either vehicle. (ii) Which vehicle experiences a larger change in kinetic energy? (a) The car does. (b) The tractor does. (c) Their kinetic energy changes are the same size. (d) It could be either vehicle.16OQ17OQ18OQ1CQ2CQA bomb, initially at rest, explodes into several pieces. (a) Is linear momentum of the system (the bomb before the explosion, the pieces after the explosion) conserved? Explain. (b) Is kinetic energy of the system conserved? Explain.4CQ5CQA juggler juggles three balls in a continuous cycle. Any one ball is in contact with one of his hands for one fifth of the time. (a) Describe the motion of the center of mass of the three balls. (b) What average force does the juggler exert on one ball while he is touching it?7CQ8CQ9CQ10CQ11CQ12CQAn open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower falls vertically downward into the box? Explain.1P2P3P4P5PA girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them (Fig. P8.7). A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of 2.00 m/s. (a) What is the velocity of the block of mass m? (b) Find the systems original elastic potential energy, taking m = 0.350 kg. (c) Is the original energy in the spring or in the cord? (d) Explain your answer to part (c). (e) Is the momentum of the system conserved in the bursting-apart process? Explain how that is possible considering (f) there are large forces acting and (g) there is no motion beforehand and plenty of motion afterward? Figure P8.78PA 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s at an angle of = 60.0 with the surface. It bounces off with the same speed and angle (Fig. P8.9). If the ball is in contact with the wall for 0.200 s, what is the average force exerted by the wall on the ball? Figure P8.9A tennis player receives a shot with the ball (0.060 0 kg) traveling horizontally at 50.0 m/s and returns the shot with the ball traveling horizontally at 40.0 m/s in the opposite direction. (a) What is the impulse delivered to the ball by the tennis racquet? (b) What work does the racquet do on the ball?11P12P13PIn a slow-pitch softball game, a 0.200-kg softball crosses the plate at 15.0 m/s at an angle of 45.0 below the horizontal. The batter hits the ball toward center field, giving it a velocity of 40.0 m/s at 30.0 above the horizontal. (a) Determine the impulse delivered to the ball. (b) If the force on the ball increases linearly for 4.00 ms, holds constant for 20.0 ms, and then decreases linearly to zero in another 4.00 ms, what is the maximum force on the ball?15P16P17P18PTwo blocks are free to slide along the frictionless, wooden track shown in Figure P8.19. The block of mass m1 = 5.00 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.0 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision. Figure P8.19As shown in Figure P8.20, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length , and negligible mass. What is the minimum value of v such that the pendulum bob will barely swing through a complete vertical circle? Figure P8.2021PA tennis ball of mass mt is held just above a basketball of mass mb, as shown in Figure P8.22. With their centers vertically aligned, both are released from rest at the same moment so that the bottom of the basketball falls freely through a height h and strikes the floor. Assume an elastic collision with the ground instantaneously reverses the velocity of the basketball while the tennis ball is still moving down because the balls have separated a bit while falling. Next, the two balls meet in an elastic collision. (a) To what height does the tennis ball rebound? (b) How do you account for the height in (a) being larger than h? Does that seem like a violation of conservation of energy? Figure P8.2223P24PAn object of mass 3.00 kg, moving with an initial velocity of 5.00im/s, collides with and sticks to an object of mass 2.00 kg with an initial velocity of 3.00jm/s. Find the final velocity of the composite object.26P27P28PA billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.33 m/s at an angle of 30.0 with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck balls velocity after the collision.30P31P32P33P34P35PA water molecule consists of an oxygen atom with two hydrogen atoms bound to it (Fig. P8.36). The angle between the two bonds is 106. If the bonds are 0.100 nm long, where is the center of mass of the molecule? Figure P8.3637P38PA 2.00-kg particle has a velocity (2.00i3.00j)m/s, and a 3.00-kg particle has a velocity (1.00i+6.00j)m/s. Find (a) the velocity of the center of mass and (b) the total momentum of the system.40P41P42P43P44P45PA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.A model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant rate.Two gliders are set in motion on a horizontal air track. A spring of force constant k is attached to the back end of the second glider. As shown in Figure P8.48, the first glider, of mass m1, moves to the right with speed v1, and the second glider, of mass m2, moves more slowly to the right with speed v2. When m1 collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of v1, v2, m1, m2, and k, find (a) the speed rat maximum compression, (b) the maximum compression xmax, and (c) the velocity of each glider after m1 has lost contact with the spring.49P50P51P52P53P54PA small block of mass m1 = 0.500 kg is released from rest at the top of a frictionless, curve-shaped wedge of mass m2 = 3.00 kg, which sits on a frictionless, horizontal surface as shown in Figure P8.55a. When the block leaves the wedge, its velocity is measured to be 4.00 m/s to the right as shown in Figure P8.55b. (a) What is the velocity of the wedge after the block reaches the horizontal surface? (b) What is the height h of the wedge?56PA 5.00-g bullet moving with an initial speed of v = 400 m/s is fired into and passes through a 1.00-kg block as shown in Figure P8.57. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 900 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find (a) the speed at which the bullet emerges from the block and (b) the amount of initial kinetic energy of the bullet that is converted into internal energy in the bullet-block system during the collision. Figure P8.5758P59PA cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?61P62PGeorge of the Jungle, with mass m, swings on a light vine hanging from a stationary tree branch. A second vine of equal length hangs from the same point, and a gorilla of larger mass M swings in the opposite direction on it. Both vines are horizontal when the primates start from rest at the same moment. George and the gorilla meet at the lowest point of their swings. Each is afraid that one vine will break, so they grab each other and hang on. They swing upward together, reaching a point where the vines make an angle of 35.0 with the vertical. Find the value of the ratio m/M.Sand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.6465PSuppose the observer O on the train in Active Figure 9.5 aims her flashlight at the far wall of the boxcar and turns it on and off, sending a pulse of light toward the far wall. Both O and O measure the time interval between when the pulse leaves the flashlight and when it hits the far wall. Which observer measures the proper time interval between these two events? (a) O (b) O (c) both observers (d) neither observer9.2QQ9.3QQ9.4QQYou are driving on a freeway at a relativistic speed. Straight ahead of you, a technician standing on the ground turns on a searchlight and a beam of light moves exactly vertically upward, as seen by the technician. As you observe the beam of light, you measure the magnitude of the vertical component of its velocity as (a) equal to c, (b) greater than c, or (c) less than c. If the technician aims the searchlight directly at you instead of upward, you measure the magnitude of the horizontal component of its velocity as (d) equal to c, (e) greater than c, or (f) less than c.The following pairs of energiesparticle 1: E, 2E; particle 2: E, 3E; particle 3: 2E, 4Erepresent the rest energy and total energy of three different particles. Rank the particles from greatest to least according to their (a) mass, (b) kinetic energy, and (c) speed.An astronaut is traveling in a spacecraft in outer space in a straight line at a constant speed of 0.500c. Which of the following effects would she experience? (a) She would feel heavier. (b) She would find it harder to breathe. (c) Her heart rate would change. (d) Some of the dimensions of her spacecraft would be shorter. (e) None of those answers is correct.A distant astronomical object (a quasar) is moving away from us at half the speed of light. What is the speed of the light we receive from this quasar? (a) greater than c (b) c (c) between c/2 and c (d) c/2 (e) between 0 and c/23OQA spacecraft zooms past the Earth with a constant velocity. An observer on the Earth measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. What does an observer on the spacecraft measure about the Earth-based clocks ticking rate? (a) It runs more than three times faster than his own clock. (b) It runs three times faster than his own. (c) It runs at the same rate as his own. (d) It runs at one-third the rate of his own. (e) It runs at less than one-third the rate of his own.Which of the following statements are fundamental postulates of the special theory of relativity? More than one statement may be correct. (a) Light moves through a substance called the ether. (b) The speed of light depends on the inertial reference frame in which it is measured. (c) The laws of physics depend on the inertial reference frame in which they are used. (d) The laws of physics are the same in all inertial reference frames. (e) The speed of light is independent of the inertial reference frame in which it is measured.6OQ7OQ8OQTwo identical clocks are set side by side and synchronized. One remains on the Earth. The other is put into orbit around the Earth moving rapidly toward the east. (i) As measured by an observer on the Earth, does the orbiting clock (a) run faster than the Earth-based clock, (b) run at the same rate, or (c) run slower? (ii) The orbiting clock is returned to its original location and brought to rest relative to the Earth-based clock. Thereafter, what happens? (a) Its reading lags farther and farther behind the Earth-based clock. (b) It lags behind the Earth-based clock by a constant amount. (c) It is synchronous with the Earth-based clock. (d) It is ahead of the Earth-based clock by a constant amount. (e) It gets farther and farther ahead of the Earth-based clock.You measure the volume of a cube at rest to be V0. You then measure the volume of the same cube as it passes you in a direction parallel to one side of the cube. The speed of the cube is 0.980c, so 5. Is the volume you measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or (e) 25V0?A train is approaching you at very high speed as you stand next to the tracks. Just as an observer on the train passes you, you both begin to play the same recorded version of a Beethoven symphony on identical MP3 players. (a) According to you, whose MP3 player finishes the symphony first? (b) What If? According to the observer on the train, whose MP3 player finishes the symphony first? (c) Whose MP3 player actually finishes the symphony first?Explain why, when defining the length of a rod, it is necessary to specify that the positions of the ends of the rod are to be measured simultaneously.A particle is moving at a speed less than c/2. If the speed of the particle is doubled, what happens to its momentum?5CQ6CQ7CQ(a) “Newtonian mechanics correctly describes objects moving at ordinary speeds, and relativistic mechanics correctly describes objects moving very fast.” (b) “Relativistic mechanics must make a smooth transition as it reduces to Newtonian mechanics in a case in which the speed of an object becomes small compared with the speed of light.” Argue for or against statements (a) and (b). 9CQ(i) An object is placed at a position p > f from a concave mirror as shown in Figure CQ9.10a, where f is the focal length of the mirror. In such a situation, an image is formed at a distance q from the mirror, as we discuss in Chapter 26. The distances are related by the mirror equation: In a finite time interval, the object is moved to the right to a position at the focal point F of the mirror. Show that the image of the object moves at a speed greater than the speed of light. (ii) A laser pointer is suspended in a horizontal plane and set into rapid rotation as shown in Figure CQ9.10b. Show that the spot of light it produces on a distant screen can move across the screen at a speed greater than the speed of light. (If you carry out this experiment, make sure the direct laser light cannot enter a person’s eyes.) (iii) Argue that the experiments in parts (i) and (ii) do not invalidate the principle that no material, no energy, and no information can move faster than light moves in a vacuum. Figure CQ9.10 With regard to reference frames, how does general relativity differ from special relativity? In a laboratory frame of reference, an observer notes that Newtons second law is valid. Assume forces and masses are measured to be the same in any reference frame for speeds small compared with the speed of light. (a) Show that Newtons second law is also valid for an observer moving at a constant speed, small compared with the speed of light, relative to the laboratory frame. (b) Show that Newtons second law is not valid in a reference frame moving past the laboratory frame with a constant acceleration.2P3PAn astronaut is traveling in a space vehicle moving at 0.500c relative to the Earth. The astronaut measures her pulse rate at 75.0 beats per minute. Signals generated by the astronauts pulse are radioed to the Earth when the vehicle is moving in a direction perpendicular to the line that connects the vehicle with an observer on the Earth. (a) What pulse rate does the Earth-based observer measure? (b) What If? What would be the pulse rate if the speed of the space vehicle were increased to 0.990c?At what speed does a clock move if it is measured to run at a rate one-half the rate of a clock at rest with respect to an observer?6P7P8P9P10P11P12PA friend passes by you in a spacecraft traveling at a high speed. He tells you that his craft is 20.0 m long and that the identically constructed craft you are sitting in is 19.0 m long. According to your observations, (a) how long is your spacecraft, (b) how long is your friends craft, and (c) what is the speed of your friends craft?14P15P16P17P18PAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.1920PFigure P9.21 shows a jet of material (at the upper right) being ejected by galaxy M87 (at the lower left). Such jets are believed to be evidence of supermassive black holes at the center of a galaxy. Suppose two jets of material from the center of a galaxy are ejected in opposite directions. Both jets move at 0.750c relative to the galaxy center. Determine the speed of one jet relative to the other. Figure P9.2122P23P24P25P26P27P28P29P30P31P32P33P34P35P36P37P38P39P40P41P42P43P44P45P46P47P48P49P50P51P52PAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?54P55P56P57P58PSpacecraft I, containing students taking a physics exam, approaches the Earth with a speed of 0.600c (relative to the Earth), while spacecraft II, containing professors proctoring the exam, moves at 0.280c (relative to the Earth) directly toward the students. If the professors stop the exam after 50.0 min have passed on their clock, for what time interval does the exam last as measured by (a) the students and (b) an observer on the Earth?60P61P62POwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63A rod of length L0 moving with a speed v along the horizontal direction makes an angle 0 with respect to the x axis. (a) Show that the length of the rod as measured by a stationary observer is L = L0[1 (v2/c2)cos2 0]1/2. (b) Show that the angle that the rod makes with the x axis is given by tan = tan 0. These results show that the rod is both contracted and rotated. (Take the lower end of the rod to be at the origin of the primed coordinate system.)65PA rigid object is rotating in a counterclockwise sense around a fixed axis. Each of the following pairs of quantities represents an initial angular position and a final angular position of the rigid object. (i) Which of the sets can only occur if the rigid object rotates through more than 180? (a) 3 rad, 6 rad (b) 1 rad, 1 rad (c) 1 rad, 5 rad (ii) Suppose the change in angular position for each of these pairs of values occurs in 1 s. Which choice represents the lowest average angular speed?Consider again the pairs of angular positions for the rigid object in Quick Quiz 10.1. If the object starts from rest at the initial angular position, moves counterclockwise with constant angular acceleration, and arrives at the final angular position with the same angular speed in all three cases, for which choice is the angular acceleration the highest?Ethan and Joseph are riding on a merry-go-round. Ethan rides on a horse at the outer rim of the circular platform, twice as far from the center of the circular platform as Joseph, who rides on an inner horse. (i) When the merry-go-round is rotating at a constant angular speed, what is Ethans angular speed? (a) twice Josephs (b) the same as Josephs (c) half of Josephs (d) impossible to determine (ii) When the merry-go-round is rotating at a constant angular speed, describe Ethans tangential speed from the same list of choices.10.4QQ(i) If you are trying to loosen a stubborn screw from a piece of wood with a screwdriver and fail, should you find a screwdriver for which the handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn bolt from a piece of metal with a wrench and fail, should you find a wrench for which the handle is (a) longer or (b) fatter?10.6QQA solid sphere and a hollow sphere have the same mass and radius. They are rotating with the same angular speed. Which is the one with the higher angular momentum? (a) the solid sphere (b) the hollow sphere (c) both have the same angular momentum (d) impossible to determineA competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy? (a) It increases. (b) It decreases. (c) It stays the same. (d) It is impossible to determine.Two items A and B are placed at the top of an incline and released from rest. For each of the three pairs of items in (i), (ii), and (iii), which item arrives at the bottom of the incline first? (i) a ball A rolling without slipping and a box B sliding on a frictionless portion of the incline (ii) a sphere A that has twice the mass and twice the radius of a sphere B, where both roll without slipping (iii) a sphere A that has the same mass and radius as a sphere B, but sphere A is solid while sphere B is hollow and both roll without slipping. Choose from the following list for each of the three pairs of items, (a) item A (b) item B (c) items A and B arrive at the same time (d) impossible to determineA cyclist rides a bicycle with a wheel radius of 0.500 m across campus. A piece of plastic on the front rim makes a clicking sound every time it passes through the fork. If the cyclist counts 320 clicks between her apartment and the cafeteria, how far has she traveled? (a) 0.50 km (b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km2OQ3OQ4OQAssume a single 300-N force is exerted on a bicycle frame as shown in Figure OQ10.5. Consider the torque produced by this force about axes perpendicular to the plane of the paper and through each of the points A through E, where E is the center of mass of the frame. Rank the torques A, B, C, D, and E from largest to smallest, noting that zero is greater than a negative quantity. If two torques are equal, note their equality in your ranking. Figure OQ10.5Consider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.Answer yes or no to the following questions. (a) Is it possible to calculate the torque acting on a rigid object without specifying an axis of rotation? (b) Is the torque independent of the location of the axis of rotation?Figure OQ10.8 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis. (d) The moment of inertia has the same small value for two axes. (e) The moment of inertia is the same for all three axes. Figure OQ10.8As shown in Figure OQ10.9, a cord is wrapped onto a cylindrical reel mounted on a fixed, frictionless, horizontal axle. When does the reel have a greater magnitude of angular acceleration? (a) When the cord is pulled down with a constant force of 50 N. (b) When an object of weight 50 N is hung from the cord and released. (c) The angular accelerations in parts (a) and (b) are equal. (d) It is impossible to determine. Figure OQ10.910OQ11OQA constant net torque is exerted on an object. Which of the following quantities for the object cannot be constant? Choose all that apply. (a) angular position (b) angular velocity (c) angular acceleration (d) moment of inertia (e) kinetic energyLet us name three perpendicular directions as right, up, and toward you as you might name them when you are facing a television screen that lies in a vertical plane. Unit vectors for these directions are r, u, and t, respectively. Consider the quantity (3u2t). (i) Is the magnitude of this vector (a) 6, (b) 3, (c) 2, or (d) 0? (ii) Is the direction of this vector (a) down, (b) toward you, (c) up, (d) away from you, or (e) left?A rod 7.0 m long is pivoted at a point 2.0 m from the left end. A downward force of 50 N acts at the left end, and a downward force of 200 N acts at the right end. At what distance to the right of the pivot can a third force of 300 N acting upward be placed to produce rotational equilibrium? Note: Neglect the weight of the rod. (a) 1.0 m (b) 2.0 m (c) 3.0 m (d) 4.0 m (e) 3.5 m15OQA 20.0-kg horizontal plank 4.00 m long rests on two supports, one at the left end and a second 1.00 m from the right end. What is the magnitude of the force exerted on the plank by the support near the right end? (a) 32.0 N (b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 N(a) What is the angular speed of the second hand of a clock? (b) What is the direction of as you view a clock hanging on a vertical wall? (c) What is the magnitude of the angular acceleration vector of the second hand?2CQ3CQWhich of the entries in Table 10.2 applies to finding the moment of inertia (a) of a long, straight sewer pipe rotating about its axis of symmetry? (b) Of an embroidery hoop rotating about an axis through its center and perpendicular to its plane? (c) Of a uniform door turning on its hinges? (d) Of a coin turning about an axis through its center and perpendicular to its faces?5CQ6CQ7CQ8CQThree objects of uniform densitya solid sphere, a solid cylinder, and a hollow cylinderare placed at the top of an incline (Fig. CQ10.9). They are all released from rest at the same elevation and roll without slipping. (a) Which object reaches the bottom first? (b) Which reaches it last? Note: The result is independent of the masses and the radii of the objects. (Try this activity at home!) Figure CQ10.910CQ