EBK INTRODUCTION TO HEAT TRANSFER
EBK INTRODUCTION TO HEAT TRANSFER
6th Edition
ISBN: 9780470913246
Author: Bergman
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.20P

A wall has inner and outer surface temperatures of 16 and 6 ° C, respectively. The interior and exterior air temperatures are 20 and 5 ° C, respectively. The inner and outer convection heat transfer coefficients are 5 and 20 W/m 2 K, respectively. Calculate the heat flux from the interior air to the wall, from the wall to the exterior air, and from the wall to the interior air. Is the wall under steady-state conditions?

Blurred answer
Students have asked these similar questions
Steam at 235°C is flowing inside a steel pipe (k = 61 W/m ∙ °C) whose inner and outer diameters are 10 cm and 12 cm, respectively, in an environment at 20°C. The heat transfer coefficients inside and outside the pipe are 105 W/m2 ∙ °C and 14 W/m2 ∙ °C, respectively. Determine (a) the thickness of the insulation (k = 0.038 W/m ∙ °C) needed to reduce the heat loss by 95 percent and (b) the thickness of the insulation needed to reduce the exposed surface temperature of insulated pipe to 40°C for safety reasons.
Consider a person standing in a breezy room at 20°C. Determine the total rate of heat transfer from this person if the exposed surface area and the average outer surface temperature of the person are 1.6 m2 and 29°C, respectively, and the convection heat transfer coefficient is 6 W/m2 ·°C (Fig. 2–75).
A steel duct whose internal diameter is 5.0 cm, and external diameter is 7.6 cm and thermal conductivity is: k = 15.0 (W/(m ºC)) is covered with an insulating material whose thickness is 2.0 cm and of thermal conductivity k = 0.2 (W/(m ºC)). A hot gas flows through the interior of the duct at a temperature of 330.0 ºC that generates a heat transfer coefficient by forced convection h=400.0 (W/(m^2 · ºC)). The outer surface of the insulating layer is exposed to air whose temperature is 30.0 ºC with forced convection heat transfer surface h = 60.0 (W/(m^2 · °C)). As a process engineer and in charge of company operations, you have been asked to: i. Determine the heat loss experienced by the pipe along 10.0 m.ii. The temperature drops that are generated in the different thermal resistances of the system. That is, on the air side, the duct wall and on the hot gas side.

Chapter 1 Solutions

EBK INTRODUCTION TO HEAT TRANSFER

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license