Theory and Design for Mechanical Measurements
Theory and Design for Mechanical Measurements
6th Edition
ISBN: 9781118881279
Author: Richard S. Figliola, Donald E. Beasley
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.21P

Chapter 1, Problem 1.21P, Figure 1.15 Orifice flow meter setup used for Problem 1.21. 1.21 The relation between the flow rate,

Figure 1.15 Orifice flow meter setup used for Problem 1.21.
1.21 The relation between the flow rate, Q, through a pipeline of area A and the pressure drop Ap across an orifice-type flow meter inserted in that line (Figure 1.15) is given by Q = CAyJlApIp where p is density and C is a coefficient. For a pipe diameter of 1 m and a flow range of 20 °C water between 2
•J
and 10 m /min and C = 0.75, plot the expected form of the calibration curve for flow rate versus pressure drop over the flow range. Is the static sensitivity a constant? Incidentally, the device and test method is described by both ANSI/ASME Test Standard PTC 19.5 and ISO 5167.

Blurred answer
Students have asked these similar questions
A2: FLUID FLOW, FLOW RATE & PRESSURE DROPProblem:6. At sea level, atmospheric pressure is 14.7 psia (101 325 Pa). A bicycle tire (at sea level) is inflated to 50 psi (344 737 Pa). Determine the gauge and absolute pressures in the inflated tire.
In a chemistry plant, through a horizontal smooth pipeline with a diameter of 0,3 m, a fluid with density and viscosity of 769 kg/m3 and 0,0007 Pa-s, respectively is flowing with a flow rate of 0,009 m3/s. Disregarding the pipe entrance effects and treating flow being steady, uniform and incompressible; a) Find the magnitude of mean velocity (in m/s). (Please use only 3 decimal digits.)  b) Find Reynolds number. (Please do not use any decimal digit.) c) Find the magnitude of friction factor. (Please use 4 decimal digits.)
A fire hose has an inside diameter of 6.5 cm. Suppose such a hose carries a water flow of 40.5 L/s starting at a gauge pressure of 1.68 × 106 N/m2 . The hose discharges through a nozzle having an inside diameter of 3.4 cm. Take the viscosity of water to be 1.005 × 10-3 (N/m2)⋅s dh = 6.5 cmdn = 3.4 cmP = 1.68 × 106 N/m2Q = 40.5 L/s a. the Reynolds number, NR, for flow in the fire hose to show that the flow must be turbulent, with NR≥ 3000.  b. Calculate the Reynolds number, NR, for flow in the fire hose and nozzle to show that the flow must be turbulent, with NR≥ 3000.

Chapter 1 Solutions

Theory and Design for Mechanical Measurements

Ch. 1 - State the purpose of using randomization methods...Ch. 1 - Provide an example of repetition and replication...Ch. 1 - Develop a test plan that might be used to estimate...Ch. 1 - Develop a test plan that might be used to evaluate...Ch. 1 - A race engine shop has just completed two engines...Ch. 1 - A thermodynamics model assumes that a particular...Ch. 1 - Regarding the Mars Climate Orbiter spacecraft...Ch. 1 - A large batch of carefully made machine shafts can...Ch. 1 - Suggest an approach or approaches to estimate the...Ch. 1 - Suggest a test matrix to evaluate the wear...Ch. 1 - Figure 1.15 Orifice flow meter setup used for...Ch. 1 - The sale of motor fuel is an essential business in...Ch. 1 - Using either the ASME 19.5 or ISO 5167 test...Ch. 1 - A simple thermocouple circuit is formed using two...Ch. 1 - 1.25 A linear variable displacement transducer...Ch. 1 - For the LVDT calibration of the previous problem,...Ch. 1 - A manufacturer wants to quantify the expected...Ch. 1 - Prob. 1.28PCh. 1 - As described in a preceding problem, the...Ch. 1 - Light gates may be used to measure the speed of...Ch. 1 - You estimate your car’s fuel use by recording...Ch. 1 - When discussing concomitant methods, we used the...Ch. 1 - Prob. 1.33PCh. 1 - For the strain gauge calibration of the previous...Ch. 1 - The acceleration of a cart down a plane inclined...Ch. 1 - In general, what is meant by the term “standard”?...Ch. 1 - A common scenario: An engineer has two pencil-...Ch. 1 - Explain the potential differences in the following...Ch. 1 - Research the following test standards and codes....Ch. 1 - A hotel chain based in the United States contracts...Ch. 1 - Test code ASTM 558-13 allows for the comparison of...Ch. 1 - Suggest a reasonable number of significant digits...Ch. 1 - Using spreadsheet software (such as Microsoft...Ch. 1 - Prob. 1.44PCh. 1 - Round the following numbers to 3 significant...Ch. 1 - Express the result, rounding to an appropriate num...Ch. 1 - Express the result by rounding to an appropriate...Ch. 1 - A car’s speed is determined by the time it takes...Ch. 1 - How much error could you tolerate in (1) book...Ch. 1 - Apply the guidelines to determine the number of...Ch. 1 - Using a tape measure having 1 mm graduations, the...Ch. 1 - Show how the following functions can be...Ch. 1 - Prob. 1.53PCh. 1 - For the calibration data of Table 1.5, determine...Ch. 1 - Prob. 1.55PCh. 1 - Each of the following equations can be represented...Ch. 1 - Plot y = 10e“° 5x volts on in semilog format (use...Ch. 1 - Prob. 1.58PCh. 1 - Prob. 1.59P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License