INTRO.TO HEAT TRANSFER-W/ETEXT
INTRO.TO HEAT TRANSFER-W/ETEXT
6th Edition
ISBN: 9781118738764
Author: Bergman
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.45P

An aluminum plate 4 mm thick is mounted in a horizontal position, and its bottom surface is well insulated. A special, thin coating is applied to the top surface such that it absorbs 80 % of any incident solar radiation, while having an emissivity of 0.25. The density ρ and specific heat c of aluminum are known to be 2700 kg/m 3 and 900 J/kg K, respectively.

  1. Consider conditions for which the plate is at a temperature of 25 ° C and its top surface is suddenly exposed to ambient air at T = 20 ° C and to solar radiation that provides an incident flux of 900 W/m 2 . The convection heat transfer coefficient between the surface and the air is h = 20 W/m 2 K . What is the initial rate of change of the plate temperature?
  2. What will be the equilibrium temperature of the plate when steady-state conditions are reached?
  3. The surface radiative properties depend on the specific nature of the applied coating. Compute and plot the steady-state temperature as a function of the emissivity for 0.05 ε 1 , with all other conditions remaining as prescribed. Repeat your calculations for values of as α S = 0.5 and 1.0, and plot the results with those obtained for α S = 0.8. If the intent is to maximize the plate temperature, what is the most desirable combination of the plate emissivity and its absorptivity to solar radiation?

Blurred answer
Students have asked these similar questions
A small, oxidized, horizontal metal tube with an OD of 0.0254 m (1 in.), 0.61 m (2 ft) long, and with a surface temperature at 588 K (600°F) is in a very large furnace enclosure with fire-brick walls and the surrounding air at 1088 K (1500°F). The emissivity of the metal tube is 0.60 at 1088 K and 0.46 at 588 K. Calculate the heat transfer to the tube by radiation using SI units and AES units.
Determine the heat flow between the roof and floor of 4 x 3 m size of a furnace of 4 m x 4 m x 3 m size when the roof is at 1200 K and the floor is maintained at 600 K, with the other surfaces non absorbing and reradiating. The surface emissivity of the hotter surface is 0.8 and that of the cooler surface 0.6
An astronaut performing an extra-vehicular activity(space walk) shaded from the Sun is wearing a spacesuitthat can be approximated as perfectly white (e = 0) exceptfor a 5 cm × 8 cm patch in the form of the astronaut’snational flag. The patch has emissivity 0.300. The spacesuitunder the patch is 0.500 cm thick, with a thermalconductivity k = 0.0600 W/m °C , and its inner surface isat a temperature of 20.0 °C . What is the temperature of thepatch, and what is the rate of heat loss through it? Assumethe patch is so thin that its outer surface is at the sametemperature as the outer surface of the spacesuit under it.Also assume the temperature of outer space is 0 K. You willget an equation that is very hard to solve in closed form,so you can solve it numerically with a graphing calculator,with software, or even by trial and error with a calculator.

Chapter 1 Solutions

INTRO.TO HEAT TRANSFER-W/ETEXT

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license