Chemistry for Engineering Students

3rd Edition
Lawrence S. Brown + 1 other
Publisher: Cengage Learning
ISBN: 9781285199023



Chemistry for Engineering Students

3rd Edition
Lawrence S. Brown + 1 other
Publisher: Cengage Learning
ISBN: 9781285199023
Chapter 1, Problem 1CO
Textbook Problem

Describe how chemistry and engineering helped transform aluminum from a precious metal into an inexpensive structural material.

Interpretation Introduction

Interpretation: The mechanism by which chemistry and engineering helped transform aluminum from a precious metal into an inexpensive structural material should be explained.

Concept Introduction:

Aluminum is known to be the world’s most abundant metal. It is the third most common element and present as the 8% of the earth’s crust. It is derived from the mineral bauxite.

Pure form of aluminum is soft, corrosion resistant, ductile and has a high electrical conductivity. It is used as foil and conductor cables by alloying with other metals in order to give strength to it. It is known to be the lightest engineering metal with strength to weight ratio. More than the steel, this makes aluminum an important structural material. Opposite to steel, the strength of aluminum increases on decreasing temperature. Thus, aluminum works well in the cold atmosphere. For pure aluminum, the tensile strength is 90 MPa which is increased to 680 MPa for the aluminum alloys treated with heat.

Explanation of Solution

The increase in application of the aluminum is due to its properties such as strength, recyclability, lightness, formability and resistance to corrosion. The types of product ranges from the packaging foils to the structural materials.

Aluminum is generally alloyed with metals such as magnesium, zinc, copper, manganese, silicon, and lithium. Other metals such as titanium, chromium, lead, nickel and bismuth are also added in small quantities.

The tensile strength of pure aluminum is low, after the addition of other metals for alloying, the strength of the aluminum increases.

Mechanisms for strengthening aluminum:

The engineering applications commonly for aluminum includes automotive, aerospace, buildings, beer and soda cans. Since, the pure aluminum is soft, the strengthening of aluminum is important to use it for engineering structures.

The strength of aluminum is modified with the help of the cold working, heat treating and alloying. Generally, the strength of alloys can be increased by cold working but some of the alloys required additional strength and undergoes solid solution strengthening, precipitation strengthening, and dispersion strengthening.

Cold working: This reduces the material thickness. The sheets and plates of different thickness are made with the help of cold rolling. Generally, the strength of all the aluminum alloy can be increased by cold working.

Solid solution strengthening: The strength of metal increases when any alloying element is added to the aluminum. The mixture so formed is called a solid solution as the aluminum is mixed with the alloying atoms. The strengthening extent depends on the type and percentage of alloying elements added to the aluminum.

Precipitation strengthening: The particles with size less than 0.001 mm are formed inside the metal in this process. The particles are known as precipitates and contain the aluminum compounds with alloying elements or alloying elements compounds. This is due to the series of heat treatment. When the precipitate is formed, the step is known as aging.

Dispersion strengthening: In the aluminum casting process, when alloy of manganese reacts with aluminum and silicon and iron, the dispersoid particles are formed. The diameter of these particles is less than 0.001 mm. The grain structure is influenced by the dispersoid particles which is formed during the heat treatment. This results in the increase strength of alloy as compared to the one formed without dispersoids.

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 1 Solutions

Chemistry for Engineering Students
Show all chapter solutions
Ch. 1 - Use the web to find current prices offered for...Ch. 1 - Use the web to determine the differences in the...Ch. 1 - When we make observations in the laboratory, which...Ch. 1 - Which of the following items are matter and which...Ch. 1 - Which macroscopic characteristics differentiate...Ch. 1 - How can a liquid be distinguished from a fine...Ch. 1 - Some farmers use ammonia, NHS, as a fertilizer....Ch. 1 - 1.10 Do the terms element and atom mean the same...Ch. 1 - 1.11 Label each of the following as either a...Ch. 1 - 1.12 Why do physical properties play a role in...Ch. 1 - 1.13 Physical properties may change because of a...Ch. 1 - 1.14 Which part of the following descriptions of a...Ch. 1 - Use a molecular level description to explain why...Ch. 1 - All molecules attract each other to some extent,...Ch. 1 - 1.15 We used the example of attendance at a...Ch. 1 - 1.16 Complete the following statement: Data that...Ch. 1 - 1.17 Complete the following statement: Data that...Ch. 1 - 1.18 Two golfers are practicing shots around a...Ch. 1 - 1.19 Use your own words to explain the difference...Ch. 1 - 1.20 Suppose that you are waiting at a corner for...Ch. 1 - 1.21 When a scientist looks at an experiment and...Ch. 1 - 1.22 What is the difference between a hypothesis...Ch. 1 - 1.23 Should the words theory and model be used...Ch. 1 - 1.24 What is a law of nature? Are all scientific...Ch. 1 - 1.25 Describe a miscommunication that can arise...Ch. 1 - 1.26 What is the difference between a qualitative...Ch. 1 - 1.27 Identify which of the following units are...Ch. 1 - 1.28 What is a “derived” unit?Ch. 1 - 1.29 Rank the following prefixes in order of...Ch. 1 - 1.30 The largest computers now include disk...Ch. 1 - 1.31 Historically, some unit differences reflected...Ch. 1 - 1.32 Use the web to determine how the Btu was...Ch. 1 - 1.33 How many micrograms are equal to one gram?Ch. 1 - 1.34 Convert the value 0.120 ppb into ppm.Ch. 1 - 1.35 How was the Fahrenheit temperature scale...Ch. 1 - Superconductors are materials that have no...Ch. 1 - 1.37 Express each of the following temperatures in...Ch. 1 - 1.38 Express (a) 275 oC in K, (b) 25.55 K in oC,...Ch. 1 - 1.39 Express each of the following numbers in...Ch. 1 - 1.40 How many significant figures are there in...Ch. 1 - 1.41 How many significant figures are present in...Ch. 1 - Perform these calculations and express the result...Ch. 1 - 1.43 Calculate the following to the correct number...Ch. 1 - 1.44 In an attempt to determine the velocity of a...Ch. 1 - 1.45 A student finds that the mass of an object is...Ch. 1 - 1.46 Measurements indicate that 23.6% of the...Ch. 1 - 1.47 A student weighs 10 quarters and finds that...Ch. 1 - 1.48 A rock is placed on a balance and its mass is...Ch. 1 - 1.49 A package of eight apples has a mass of 1.00...Ch. 1 - 1.50 If a 1.00 kg bag containing eight apples...Ch. 1 - 1.51 A person measures 173 cm in height. What is...Ch. 1 - 1.52 The distance between two atoms in a molecule...Ch. 1 - 1.53 Carry out the following unit conversions. (a)...Ch. 1 - 1.54 Carry out each of the following conversions....Ch. 1 - 1.55 Convert 22.3 mL to (a) liters, (b) cubic...Ch. 1 - 1.56 If a vehicle is travelling 92 m/s, what is...Ch. 1 - 1.57 A load of asphalt weights 245 lb. and...Ch. 1 - 1.58 One square mile contains exactly 640 acres....Ch. 1 - 1.59 A sample of crude oil has a density of 0.87...Ch. 1 - 1.60 Mercury has a density of 13.6 g/mL. What is...Ch. 1 - 1.61 The area of the 48 contiguous states is...Ch. 1 - 1.62 The dimensions of aluminium foil in a box for...Ch. 1 - 1.63 Titanium is used in airplane bodies because...Ch. 1 - 1.64 Wire is often sold in pound spools according...Ch. 1 - 1.65 An industrial engineer is designing a process...Ch. 1 - 1.66 An engineer is working with archaeologists to...Ch. 1 - Draw a molecular scale picture to show how a...Ch. 1 - Draw a molecular scale picture that distinguishes...Ch. 1 - 1.67 On average, Earth’s crust contains about 8.1...Ch. 1 - 1.68 As computer processor speeds increase, it is...Ch. 1 - 1.69 The “Western Stone” in Jerusalem is one of...Ch. 1 - A load of bauxite has a density of 3.15 g/cm3. If...Ch. 1 - Suppose that a new material has been devised with...Ch. 1 - Rank aluminum, steel, and titanium in order of...Ch. 1 - Compare the strengths of aluminum, steel, and...Ch. 1 - Aluminum is not as strong as steel. What other...Ch. 1 - Use the web to research the differences in the...Ch. 1 - Use the web to research the elastic modulus and...Ch. 1 - Use the web to research the relative cost of...Ch. 1 - 1.84 A student was given two metal cubes that...Ch. 1 - 1.85 Battery acid has a density of 1.285 g/mL and...Ch. 1 - 1.86 Unfermented grape juice used to make wine is...Ch. 1 - 1.87 A solution of ethanol in water has a volume...Ch. 1 - 1.88 Legend has it that Archimedes, a famous...Ch. 1 - 1.89 Imagine that you place a cork measuring...Ch. 1 - 1.90 A calibrated flask was filled to the 25.00-mL...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Show solutions add
Divide into two groups. One group will argue in favor of the use of ergogenic aids by athletes, and one group w...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

A synchronous satellite, which always remains above the same point on a planets equator, is put in orbit around...

Physics for Scientists and Engineers, Technology Update (No access codes included)

What is echolocation? How do whales use it?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin