Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 12, Problem 12.60AP

Review. A wire of length L, Young’s modulus Y, and cross-sectional area A is stretched elastically by an amount ∆L. By Hooke’s law, the restoring force is −kL. (a) Show that k = YA/L. (b) Show that the work done in stretching the wire by an amount ∆L is W = 1 2 Y A ( Δ L ) 2 / L .

Blurred answer

Chapter 12 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 12 - Prob. 12.7OQCh. 12 - In analyzing the equilibrium of a flat, rigid...Ch. 12 - A certain wire, 3 m long, stretches by 1.2 mm when...Ch. 12 - The center of gravity of an ax is on the...Ch. 12 - A ladder stands on the ground, leaning against a...Ch. 12 - Prob. 12.2CQCh. 12 - (a) Give an example in which the net force acting...Ch. 12 - Prob. 12.4CQCh. 12 - Prob. 12.5CQCh. 12 - A girl has a large, docile dog she wishes to weigh...Ch. 12 - Prob. 12.7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - What are the necessary conditions for equilibrium...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - A vaulter holds a 29.4-N pole in equilibrium by...Ch. 12 - A 15.0-in uniform ladder weighing 500 N rests...Ch. 12 - A uniform ladder of length L.and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 12.19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 12.22PCh. 12 - One end of a uniform 4.00-m-long rod of weight Fg...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - A 200-kg load is hung on a wire of length 4.00m,...Ch. 12 - A walkway suspended across a hotel lobby is...Ch. 12 - Review. A 2.00-m-long cylindrical steel wire with...Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 12.39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 12.41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - Prob. 12.47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 12.52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 12.55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - (a) Estimate the force with which a karate master...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 12.62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform pole is propped between the floor and...Ch. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Figure P12.67 shows a vertical force applied...Ch. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • The lintel of prestressed reinforced concrete in Figure P12.27 is 1.50 m long. The concrete encloses one steel reinforcing rod with cross-sectional area 1.50 cm2. The rod joins two strong end plates. The cross-sectional area of the concrete perpendicular to the rod is 50.0 cm2. Youngs modulus for the concrete is 30.0 109 N/m2. After the concrete cures and the original tension T1 in the rod is released, the concrete is to be under compressive stress 8.00 106 N/m2. (a) By what distance will the rod compress the concrete when the original tension in the rod is released? (b) What is the new tension T2 in the rod? (c) The rod will then be how much longer than its unstressed length? (d) When the concrete was poured, the rod should have been stretched by what extension distance from its unstressed length? (e) Find the required original tension T1 in the rod. Figure P12.27
    A copper rod with length 1.4 m and cross-sectional area 2.0 cm2 is fastened to a steel rod of length L and cross-sectional area 1.0 cm2. The compound structure is pulled on each side by two forces of equal magnitude 6.00 104 N (Fig. P14.57). Find the length L of the steel rod if the elongations (L) of the two rods are equal. Use the values Ysteel = 2.0 1011 Pa and YCu = 1.1 1011 Pa. FIGURE P14.57
    An object of mass m1 = 9.00 kg is in equilibrium when connected to a light spring of constant k = 100 N/m that is fastened to a wall as shown in Figure P12.67a. A second object, m2 = 7.00 kg, is slowly pushed up against m1, compressing the spring by the amount A = 0.200 m (see Fig. P12.67b). The system is then released, and both objects start moving to the right on the frictionless surface. (a) When m1 reaches the equilibrium point, m2 loses contact with m1 (see Fig. P12.67c) and moves to the right with speed v. Determine the value of v. (b) How far apart are the objects when the spring is fully stretched for the first time (the distance D in Fig. P12.67d)? Figure P12.67
  • A lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77
    Review. A 0.250-kg block resting on a frictionless, horizontal surface is attached to a spring whose force constant is 83.8 N/m as in Figure P15.15. A horizontal force F causes the spring to stretch a distance of 5.46 cm from its equilibrium position. (a) Find the magnitude of F. (b) What is the total energy stored in the system when the spring is stretched? (c) Find the magnitude of the acceleration of the block just after the applied force is removed. (d) Find the speed of the block when it first reaches the equilibrium position. (e) If the surface is not frictionless but the block still reaches the equilibrium position, would your answer to part (d) be larger or smaller? (f) What other information would you need to know to find the actual answer to part (d) in this case? (g) What is the largest value of the coefficient of friction that would allow the block to reach the equilibrium position? Figure P15.15
    A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers, Technology ...
    Physics
    ISBN:9781305116399
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers, Technology ...
    Physics
    ISBN:9781305116399
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY