BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

How should the proof of property (12.3.1) be modified to prove property (12.3.2)?

To determine

To prove:

The property that k equivalence is an equivalence relation on S, the set of states of A for each k0.

Explanation

Given information:

A is a finite-state automaton and the set of the states of A is denoted by S.

Proof:

Rk is the notation that is used to denote k equivalence of two states.

The properties of reflexivity, symmetricity and transitivity of Rk should be proved for any input string in the accepted language of the finite-state automaton as well as the Rk relation. The condition that should be changed for k equivalence is the length of input string w is less than or equal to k where for each k0.

Suppose s,t and u are three states of S and hereafter the length of input string w is less than or equal k.

Suppose the states s and t are k equivalence states of A. Then these two states send the automaton to a nonaccepting state or an accepting state for any input string w in the set of strings. This property can be denoted by sRkt.

If sRkt for any string input w, the eventual function Nk will be,

Nk(s,w)Nk(t,w)

If Nk(s,w) is a nonaccepting state, then Nk(t,w) is also a nonaccepting state.

By the symmetricity of the above relationship, for input string w ,

Nk(t,w)Nk(s,w)

Hence, sRkt and tRks is equal for input string w.

Therefore, we can conclude that Rk is symmetric

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-11TYSect-12.1 P-12TYSect-12.1 P-1ESSect-12.1 P-2ESSect-12.1 P-3ESSect-12.1 P-4ESSect-12.1 P-5ESSect-12.1 P-6ESSect-12.1 P-7ESSect-12.1 P-8ESSect-12.1 P-9ESSect-12.1 P-10ESSect-12.1 P-11ESSect-12.1 P-12ESSect-12.1 P-13ESSect-12.1 P-14ESSect-12.1 P-15ESSect-12.1 P-16ESSect-12.1 P-17ESSect-12.1 P-18ESSect-12.1 P-19ESSect-12.1 P-20ESSect-12.1 P-21ESSect-12.1 P-22ESSect-12.1 P-23ESSect-12.1 P-24ESSect-12.1 P-25ESSect-12.1 P-26ESSect-12.1 P-27ESSect-12.1 P-28ESSect-12.1 P-29ESSect-12.1 P-30ESSect-12.1 P-31ESSect-12.1 P-32ESSect-12.1 P-33ESSect-12.1 P-34ESSect-12.1 P-35ESSect-12.1 P-36ESSect-12.1 P-37ESSect-12.1 P-38ESSect-12.1 P-39ESSect-12.1 P-40ESSect-12.1 P-41ESSect-12.2 P-1TYSect-12.2 P-2TYSect-12.2 P-3TYSect-12.2 P-4TYSect-12.2 P-5TYSect-12.2 P-6TYSect-12.2 P-7TYSect-12.2 P-8TYSect-12.2 P-9TYSect-12.2 P-10TYSect-12.2 P-1ESSect-12.2 P-2ESSect-12.2 P-3ESSect-12.2 P-4ESSect-12.2 P-5ESSect-12.2 P-6ESSect-12.2 P-7ESSect-12.2 P-8ESSect-12.2 P-9ESSect-12.2 P-10ESSect-12.2 P-11ESSect-12.2 P-12ESSect-12.2 P-13ESSect-12.2 P-14ESSect-12.2 P-15ESSect-12.2 P-16ESSect-12.2 P-17ESSect-12.2 P-18ESSect-12.2 P-19ESSect-12.2 P-20ESSect-12.2 P-21ESSect-12.2 P-22ESSect-12.2 P-23ESSect-12.2 P-24ESSect-12.2 P-25ESSect-12.2 P-26ESSect-12.2 P-27ESSect-12.2 P-28ESSect-12.2 P-29ESSect-12.2 P-30ESSect-12.2 P-31ESSect-12.2 P-32ESSect-12.2 P-33ESSect-12.2 P-34ESSect-12.2 P-35ESSect-12.2 P-36ESSect-12.2 P-37ESSect-12.2 P-38ESSect-12.2 P-39ESSect-12.2 P-40ESSect-12.2 P-41ESSect-12.2 P-42ESSect-12.2 P-43ESSect-12.2 P-44ESSect-12.2 P-45ESSect-12.2 P-46ESSect-12.2 P-47ESSect-12.2 P-48ESSect-12.2 P-49ESSect-12.2 P-50ESSect-12.2 P-51ESSect-12.2 P-52ESSect-12.2 P-53ESSect-12.2 P-54ESSect-12.3 P-1TYSect-12.3 P-2TYSect-12.3 P-3TYSect-12.3 P-4TYSect-12.3 P-5TYSect-12.3 P-1ESSect-12.3 P-2ESSect-12.3 P-3ESSect-12.3 P-4ESSect-12.3 P-5ESSect-12.3 P-6ESSect-12.3 P-7ESSect-12.3 P-8ESSect-12.3 P-9ESSect-12.3 P-10ESSect-12.3 P-11ESSect-12.3 P-12ESSect-12.3 P-13ESSect-12.3 P-14ESSect-12.3 P-15ESSect-12.3 P-16ESSect-12.3 P-17ESSect-12.3 P-18ES