Classical Mechanics
Classical Mechanics
5th Edition
ISBN: 9781891389221
Author: John R. Taylor
Publisher: University Science Books
Question
Book Icon
Chapter 13, Problem 13.21P

(a)

To determine

The Hamiltonian using generalized coordinates X,Y,r,ϕ.

(a)

Expert Solution
Check Mark

Answer to Problem 13.21P

The Hamiltonian is H=px2+py22M+12μ(pr2+pϕ2r2)+12k(rl0)2

Explanation of Solution

Write the kinetic energy of the system

  T=12MR˙2+12μr˙2

Here, R is the position of the center of the mass, and r the relative position of theses mass

Write the potential energy of the system

  U=12k(rl0)2        (I)

Here, k is the spring constant.

The lagrangian of the spring – mass system is,

  L=TU=12MR˙2+12μr˙2(12k(rl0)2)        (II)

Write the center of mass position for rectangular coordinates,

  R˙2=X2+Y2        (III)

Write the center of mass position for rectangular coordinates,

  r˙2=r˙2+r2ϕ˙2        (IV)

Substitute expression (III) and (IV) in equation (II) and solve for L 

  L=12M(X˙2+Y˙2)2+12μ(r˙2+r2ϕ˙2)2(12k(rl0)2)        (V)

Write the Canonical momenta along the X coordinates,

  px=LX˙=X˙(12M(X˙2+Y˙2)2+12μ(r˙2+r2ϕ˙2)2(12k(rl0)2))=MX˙X˙=pxM        (VI)

Write the Canonical momenta along the Y coordinates,

  py=LY˙=Y˙(12M(X˙2+Y˙2)2+12μ(r˙2+r2ϕ˙2)2(12k(rl0)2))=MY˙Y˙=pyM        (VII)

Write the canonical velocity is,

  pr=Lr˙=r˙(12M(X˙2+Y˙2)2+12μ(r˙2+r2ϕ˙2)2(12k(rl0)2))=μr˙r˙=prμ        (VII)

Write the another canonical velocity is,

  pϕ=Lϕ˙=ϕ˙(12M(X˙2+Y˙2)2+12μ(r˙2+r2ϕ˙2)2(12k(rl0)2))=μr2ϕ˙ϕ˙=pϕμr2        (VIII)

Conclusion:

Write the Hamiltonian of the system,

  H=ipiq˙iL=pxX˙+pyY˙+prr˙+pϕϕ˙L={(pxpxM+pypyM+prprμ+pϕpϕμr2)(12M(X˙2+Y˙2)+12μ(r˙2+r˙2ϕ˙2)12k(rl0)2)}={pxM+pyM+prμ+pϕμr212M(px2M2+py2M2)+12μ(pr2M2+r2pϕ2μ2r4)+12k(rl0)2}=px2+py22M+12μ(pr2+r2pϕ2μ2r4)+12k(rl0)2        (IX)

The Hamiltonian is H=px2+py22M+12μ(pr2+pϕ2r2)+12k(rl0)2

(b)

To determine

The ε will oscillate about zero.

(b)

Expert Solution
Check Mark

Answer to Problem 13.21P

The ε will oscillate about zero when the orbit has, z=z0+ε with ε small.

Explanation of Solution

Write the Hamiltonian equation with respect to pz is,

  z˙=pz2m(c2+1)        (I)

Differentiate the equation on both sides,

  z¨=p˙zm(c2+1)        (II)

Substitute pϕ2m(c2z3)mg for p˙z, and z0+ε for z in expression (II)

  z¨=p˙zm(c2+1)(pϕ2mc2(z3)mg)z¨=p˙zm(c2+1)(pϕ2mc2(z0+ε)3mg)z¨=p˙zm(c2+1)(pϕ2mc2(1+εz0)3mg)z¨=1m(c2+1)(pϕ2mc2z03(1+εz0)3mg)        (II)

Conclusion:

Re-write the expression (II) by using binomial theorem to reduce the term (1+εz0)3 as (13εz0)

  z¨=1m(c2+1)(pϕ2mc2z03(13εz0)mg)z¨=pϕ2m2c2(c2+1)z033pϕ2εm2c2(c2+1)z04gc2+1=(pϕ2m2c2(c2+1)z03gc2+1)3pϕ2εm2c2(c2+1)z04        (III)

Write the fixed height of mass m is given by

  z=z0+ε        (IV)

Differentiate the equation on both the sides,

    z˙=0+ε˙=ε˙

Similarly differentiate the equation on both the sides,

  z¨=ε¨        (V)

Substitute expression (III) in above expression (V),

  ε¨=(pϕ2m2c2(c2+1)z03gc2+1)3pϕ2εm2c2(c2+1)z04H=p22m+12kq2H=12(q2+p2)

Here, neglect the term pϕ2m2c2(c2+1)z03gc2+1 in the above equation,

  ε¨=(3pϕ2εm2c2(c2+1)z04)ε        (VI)

Therefore, the above result indicates that the ε will oscillate about zero when the orbit has  z=z0+ε with ε small.

(c)

To determine

The angular frequency of the oscillations.

(c)

Expert Solution
Check Mark

Answer to Problem 13.21P

The angular frequency of the oscillations ω=3ϕ˙sinα

Explanation of Solution

Write the expression for ε¨ from subpart (b),

  ε¨=(3pϕ2εm2c2(c2+1)z04)εε¨ε=(3pϕ2εm2c2(c2+1)z04)        (I)

Write the relation between normal frequencies and ε¨ is,

  ε¨i(t)=ωi2εi(t)

Write the frequency of the system is,

  ω2=ε¨ε=(3pϕ2εm2c2(c2+1)z04)=3(pϕmc2z02)(c2c2+1)        (II)

Conclusion:

Substitute tanα for c, in expression (II)

  ω2=3(pϕmc2z02)(tanα2tan2α+1)ω2=3(pϕmc2z02)(sinα2cosα21cosα2)ω2=3(pϕmc2z02)sinα2        (III)

Substitute ϕ˙ for pϕmc2z2, in expression (III)

  ω2=3(pϕmc2z02)sinα2ω2=3(ϕ˙2)sin2α=3ϕ˙sinα

The angular frequency of the oscillations ω=3ϕ˙sinα

(d)

To determine

The value for α.

(d)

Expert Solution
Check Mark

Answer to Problem 13.21P

The value for α is 35.3°

Explanation of Solution

Write the expression for the angular frequency of the oscillations

  ω=3ϕ˙sinα        (I)

Here, it is given that the angular frequency of the oscillation is equal to the orbital angular velocity,

  ω=ϕ˙

Conclusion:

Therefore the angular frequency equation can be re-written as,

  ϕ˙=3ϕ˙sinα1=3sinαα=sin1(13)=35.26°

The value for α is 35.3°. Here, the height z returns to its initial value for one complete circle. Thus it means the orbital must be closed one.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON