INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC
INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC
18th Edition
ISBN: 9781307362657
Author: SMITH
Publisher: MCG/CREATE
Question
Book Icon
Chapter 13, Problem 13.50P

(a)

Interpretation Introduction

Interpretation:

The bubble point temperature for any one of the given binary systems in table 13.10 is to be calculated using NRTL equation.

Concept Introduction:

Antoine equation is used to determine the vapor pressure of any substance at the given temperature by the equation:

  lnPsat(kPa)=AB(TC)+C .......(1)

Here, A, B and C are the constants specific for a substance given in table B.2 of appendix B.

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat .......(3)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] .......(4)

Here, the parameters τ12 and τ21

are calculated by the formula:

  τ12=b 12RTτ21=b 21RT .......(5)

And, G12 and G21

are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) .......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

(a)

Expert Solution
Check Mark

Answer to Problem 13.50P

The bubble point temperature for 1Propanol(1)/Water(2)

using NRTL equation is:

  TBUBL=87.69C

Explanation of Solution

Given information:

The pressure at which the bubble point temperature is to be calculated is 101.33kPa . The composition of the liquid phase at this point is given as x1=0.3 .

NRTL equation parameters are given in Table 13.10 as shown below:

INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC, Chapter 13, Problem 13.50P , additional homework tip  1

The binary system for which the bubble point temperature will be calculated is 1Propanol(1)/Water(2) at P=101.33kPa

. The liquid phase composition is:

  x1=0.3x2=0.7

From table B.2 of appendix B, the Antoine equation constants for 1Propanol(1) and Water(2)

are:

  A1=16.1154B1=3483.67C1=205.807A2=16.3872B2=3885.70C2=230.170

Now, use equation (1) to calculate the vapor pressure of 1Propanol(1) and Water(2) for bubble point temperature TC

as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21

as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( T+273.15 K)=251.98( T+273.15)τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( T+273.15 K)=824.095( T+273.15)

Use equation (6) to calculate the values of G12 and G21

as:

  G12=exp(ατ 12)=exp(0.5081× 251.98 ( T+273.15 ))=exp( 128.031 ( T+273.15 ))G21=exp(ατ 21)=exp(0.5081× 824.095 ( T+273.15 ))=exp( 266.29 ( T+273.15 ))

Now, use these values of τ12, τ21, G12 and G21 along with the given values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]=exp[( 0.7)2[τ 21 ( G 21 0.3+0.7 G 21 )2+ G 12 τ 12 ( 0.7+0.3 G 12 ) 2 ]]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2]γ2=exp[( 0.3)2[τ 12 ( G 12 0.7+0.3 G 12 )2+ G 21 τ 21 ( 0.3+0.7 G 21 ) 2 ]]

Now, use the Modified Raoult’s law equation to calculate the pressure at the given value of x1

using the below mentioned formula as:

  P=x1γ1P1sat+x2γ2P2sat

At x1=0, P=P2sat and at x1=1, P=P1sat .

Make an initial guess for T as Tguess=333.15 K and using iterative method and the condition to stop the iteration as P=101.33 kPa, find TBUBL for the given value of x1

using the preceding equations as:

  TBUBL=87.69C

(b)

Interpretation Introduction

Interpretation:

The dew point temperature for any one of the given binary systems in table 13.10 is to be calculated using NRTL equation.

Concept Introduction:

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] .......(4)

Here, the parameters τ12 and τ21

are calculated by the formula:

  τ12=b 12RTτ21=b 21RT .......(5)

And, G12 and G21

are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) .......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat .......(7)

(b)

Expert Solution
Check Mark

Answer to Problem 13.50P

The dew point temperature for 1Propanol(1)/Water(2)

using NRTL equation is:

  TDEW=91.12C

Explanation of Solution

Given information:

The pressure at which the bubble point temperature is to be calculated is 101.33kPa . The composition of the vapor phase at this point is given as y1=0.3 .

NRTL equation parameters are given in Table 13.10 as shown below:

INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC, Chapter 13, Problem 13.50P , additional homework tip  2

Use the values of P1sat, and P2sat at TC

as calculated in part (a) as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

The vapor phase composition is:

  y1=0.3y2=0.7

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21

as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( T+273.15 K)=251.98( T+273.15)τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( T+273.15 K)=824.095( T+273.15)

Use equation (6) to calculate the values of G12 and G21

as:

  G12=exp(ατ 12)=exp(0.5081× 251.98 ( T+273.15 ))=exp( 128.031 ( T+273.15 ))G21=exp(ατ 21)=exp(0.5081× 824.095 ( T+273.15 ))=exp( 266.29 ( T+273.15 ))

Now, use these values of τ12, τ21, G12 and G21 along with the guessed values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2]

Now, use the Modified Raoult’s law equation to calculate the pressure at the guessed value of x1

using the below mentioned formula as:

  P=1y1γ1P1 sat+y2γ2P2 sat

Make an initial guess for T as Tguess=363.15 K and x1 as x1(guess)=0.05 and using iterative method and the condition to stop the iteration as P=101.33 kPa, find TDew for the given value of y1

as:

  TDEW=91.12C

(c)

Interpretation Introduction

Interpretation:

  P,T flash is to be performed for any one of the given binary systems in table 13.10 using NRTL equation.

Concept Introduction:

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

The Bubble point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first bubble of vapor appears which is in equilibrium with the liquid present in the system. The equation which defines this pressure at this point is:

  PBUBL=x1γ1P1sat+x2γ2P2sat .......(3)

The Dew point pressure for a binary system in vapor/liquid equilibrium is defined as the pressure where first drop of liquid appears which is in equilibrium with the vapor present in the system at a particular temperature. The equation that defines this pressure at this point is:

  PDEW=1y1γ1P1 sat+y2γ2P2 sat .......(7)

  P,T flash calculations are done to find the values of VL, yi, and xi for a system which flashes to produce a two-phase system of vapor and liquid in equilibrium.

The equation for equilibrium ratio, Ki

also known as K-value is:

  Kiyixi .......(8)

Here, yi is the vapor phase mole fraction and xi is the liquid phase mole fraction of species i in the binary system in VLE.

The equations for flash calculations to be used are:

  L+V=1 .......(9)

Here, V is the total moles of vapor and L is the total moles of liquid.

In terms of Ki, the equation relating yi and zi

is:

  yi=ziKi1+V(Ki1) .......(10)

Here, zi is the total mole fraction of component i in the system.

(c)

Expert Solution
Check Mark

Answer to Problem 13.50P

The result of the P,T

flash calculations is:

  V=0.816L=0.184y1=0.352y2=0.648x1=0.069x2=0.931

Explanation of Solution

Given information:

The flash pressure at which the P,T flash is to be calculated is P=101.33 kPa . The total composition of component 1 at this point is given as z1=0.3 .

The condition for the flash temperature for this system is,

  T=12(TBUBL+TDEW)

NRTL equation parameters are given in Table 13.10 as shown below:

INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC, Chapter 13, Problem 13.50P , additional homework tip  3

Use the values of P1sat, and P2sat at TC

as calculated in part (a) as:

  lnP1sat=16.11543483.67(T)+205.807P1sat=e( 16.1154 3483.67 ( T )+205.807 )lnP2sat=16.38723885.70(T)+230.170P2sat=e( 16.3872 3885.70 ( T )+230.170 )

To perform P,T flash calculations, first find the bubble point and dew point temperature for the binary system 1Propanol(1) and Water(2) at pressure P=101.33 kPa .

To calculate bubble point temperature, let

  z1=x1=0.3z2=x2=0.7

Since, the given conditions are same as in part (a), the calculated value of TBUBL

as in part (a) is:

  TBUBL=87.69C

To calculate dew point temperature, let

  z1=y1=0.3z2=y2=0.7

Since, the given conditions are same as in part (a), the calculated value of TDEW

as in part (a) is:

  TDEW=91.12C

From the given condition of the flash temperature, it is calculated as:

  T=12(T BUBL+T DEW)=12(87.69+91.12)=89.405C

Use this temperature to get the values of P1sat, and P2sat

as:

  P1sat=e( 16.1154 3483.67 ( T )+205.807 )=e( 16.1154 3483.67 ( 89.405 )+205.807 )=74.80 kPaP2sat=e( 16.3872 3885.70 ( T )+230.170 )=e( 16.3872 3885.70 ( 89.405 )+230.170 )=68.596 kPa

Now, calculate the values of τ12 and τ21

as:

  τ12=b 12RT=500.40 cal mol( 1.9859 cal molK )( 89.405+273.15 K)=0.695τ21=b 21RT=1636.57 cal mol( 1.9859 cal molK )( 89.405+273.15 K)=2.273

Use equation (6) to calculate the values of G12 and G21

as:

  G12=exp(ατ 12)=exp(0.5081×0.695)=0.7025G21=exp(ατ 21)=exp(0.5081×2.273)=0.3151

Now, use these values of τ12, τ21, G12 and G21 along with the guessed values of x1 and x2 and calculate the values of γ1 and γ2

using equations set (4) as:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]γ1=exp[x22[2.273 ( 0.3151 x 1 + x 2 ( 0.3151 ) )2+ ( 0.7025 )( 0.695 ) ( x 2 + x 1 ( 0.695 ) ) 2 ]]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2]γ2=exp[x12[0.695 ( 0.7025 x 2 + x 1 ( 0.7025 ) )2+ ( 0.3151 )( 2.273 ) ( x 1 + x 2 ( 0.3151 ) ) 2 ]]

Now, using the modified Raoult’s law, calculate the values of equilibrium ratio of component 1 and 2 using equations (2) and (8) as:

  Ki=yixi=γiPi satPK1=γ1P1 satPK2=γ2P2 satP

Now, use equation (10) and write it for both the component, 1 and 2 as shown below:

  y1=0.3( K 1 )1+V( K 1 1)y2=0.7( K 2 )1+V( K 2 1) .......(11)

Since, y1+y2=1, the above equations are solved to calculate V

as:

  0.3(K1)1+V(K11)+0.7(K2)1+V(K21)=1

Now, use equation (9) to calculate the value of L

as:

  L+V=1L=1V

Also, use the calculated value of V in equation set (11) and find the values of y1 and y2 .

Using these values and the calculated values of K1 and K2, find the values of x1 and x2

by equation (8) as:

  Ki=yixixi=yiKix1=y1K1x2=y2K2

Again, substitute these calculated values of x1 and x2 as guessed values x1(guess) and x2(guess) in calculating γ1 and γ2 and follow the steps given until x1(guess)x1 . After a considerable times of iterations, the result of the P,T

flash calculations are:

  V=0.816L=0.184y1=0.352y2=0.648x1=0.069x2=0.931

(d)

Interpretation Introduction

Interpretation:

The values of the azeotropic temperature and composition of the system is to be calculated if it exists for the given binary system.

Concept Introduction:

Antoine equation is used to determine the vapor pressure of any substance at the given temperature by the equation:

  lnPsat(kPa)=AB(TC)+C .......(1)

Here, A, B and C are the constants specific for a substance given in table B.2 of appendix B.

Equation 13.19

to be used for Modified Raoult’s law is:

  yiP=xiγiPisat .......(2)

NRTL equations to be used are:

  lnγ1=x22[τ21( G 21 x 1 + x 2 G 21 )2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2]lnγ2=x12[τ12( G 12 x 2 + x 1 G 12 )2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2] .......(4)

Here, the parameters τ12 and τ21

are calculated by the formula:

  τ12=b 12RTτ21=b 21RT .......(5)

And, G12 and G21

are calculated by the formula:

  G12=exp(ατ 12)G21=exp(ατ 21) .......(6)

Where, αb12 and b21 are the NRTL equation parameters given in table 13.10 for binary systems.

Relative volatility is defined by,

  α12y1/x1y2/x2 .......(12)

When (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope in the given system.

At the azeotropic point, α12=1 and x1=y1 .

(d)

Expert Solution
Check Mark

Answer to Problem 13.50P

The azeotropic values of temperature and composition for the binary system is calculated as:

  Taz=87.526Cx1=y1=0.4461

Explanation of Solution

Given information:

The pressure at which the azeotrope of the system may exists is 101.33 kPa .

NRTL equation parameters are given in Table 13.10 as shown below:

INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC, Chapter 13, Problem 13.50P , additional homework tip  4

Use the given value of P using equation (1) to calculate Tb1 and Tb2

as:

  lnP=16.11543483.67( T b1 )+205.807ln(101.33)=16.11543483.67( T b1 )+205.807Tb1=97.2CTb1=370.35 KlnP=16.38723885.70( T b2 )+230.170ln(101.33)=16.38723885.70( T b2 )+230.170Tb2=99.99CTb2=373.14 K

From table 13.10, the parameters needed for 1Propanol(1) and Water(2)

to be used in NRTL equation are:

  α=0.5081b12=500.40 cal/molb21=1636.57 cal/mol

The value of universal gas constant to be used is,

  R=1.9859 cal/(molK)

Now, use equation (5) to calculate the values of τ12 and τ21 at Tb1 and Tb2

as:

  ( τ 12)b1=b 12RT b1=500.40 cal mol( 1.9859 cal molK )( 370.35 K)=0.6804( τ 21)b1=b 21RT b2=1636.57 cal mol( 1.9859 cal molK )( 370.35 K)=2.225( τ 12)b2=b 12RT b2=500.40 cal mol( 1.9859 cal molK )( 373.14 K)=0.6753( τ 21)b2=b 21RT b2=1636.57 cal mol( 1.9859 cal molK )( 373.14 K)=2.209

Use equation (6) to calculate the values of G12 and G21 at Tb1 and Tb2

as:

  ( G 12)b1=exp(α ( τ 12 ) b1)=exp(0.5081×0.6804)=0.7077( G 21)b1=exp(α ( τ 21 ) b1)=exp(0.5081×2.225)=0.3229( G 12)b2=exp(α ( τ 12 ) b2)=exp(0.5081×0.6753)=0.709( G 21)b2=exp(α ( τ 21 ) b2)=exp(0.5081×2.209)=0.3255

Now, use these values of τ12, τ21, G12 and G21 along with the values of x1=0 and x2=1 and calculate the values of γ1 and γ2 for Tb1 using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 1.0 )2[2.225 ( 0.3229 0.0+1.0( 0.3229 ) ) 2+ ( 0.7077 )( 0.6804 ) ( 1.0+0.0( 0.7077 ) ) 2 ])=14.9771γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 0.0 )2[0.6804 ( 0.7077 1.0+0.0( 0.7077 ) ) 2+ ( 0.3229 )( 2.225 ) ( 0.0+1.0( 0.3229 ) ) 2 ])=1.00

Calculate P1sat at Tb2 and P2sat at Tb1

using equation (1) as:

  lnP1sat=16.11543483.67( T b2 )+205.807P1sat=e( 16.1154 3483.67 ( 99.99 )+205.807 )P1sat=112.54 kPalnP2sat=16.38723885.70( T b1 )+230.170P2sat=e( 16.3872 3885.70 ( 97.2 )+230.170 )P2sat=91.63 kPa

Using equation (12) along with the modified Raoult’s law, calculate the value of relative volatility at x1=0

as:

  ( α 12)x1=0y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 14.9771)( 112.54)( 1.00)( 91.63)=18.395

For x1=1 and x2=0 and calculate the values of γ1 and γ2 for Tb2

using equations set (4) as:

  γ1=exp(x22[ τ 21 ( G 21 x 1 + x 2 G 21 ) 2+ G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ])=exp( ( 0.0 )2[2.209 ( 0.3255 1.0+0.0( 0.3255 ) ) 2+ ( 0.709 )( 0.6753 ) ( 0.0+1.0( 0.709 ) ) 2 ])=1.00γ2=exp(x12[ τ 12 ( G 12 x 2 + x 1 G 12 ) 2+ G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ])=exp( ( 1.0 )2[0.6753 ( 0.709 0.0+1.0( 0.709 ) ) 2+ ( 0.3255 )( 2.209 ) ( 1.0+0.0( 0.3255 ) ) 2 ])=4.0323

Using equation (12) along with the modified Raoult’s law, calculate the value of relative volatility at x1=1

as:

  ( α 12)x1=1y1/x1y2/x2=γ1P1 sat/Pγ2P2 sat/P=γ1P1 satγ2P2 sat=( 1.00)( 112.54)( 4.0323)( 91.63)=0.3056

Since (α 12)x1=0>1 and (α 12)x1=1<1, there exists an azeotrope for this binary system.

To calculate the azeotropic pressure, consider the condition α12=1 and x1=y1 .

Consider the following set of equations in the given order as:

step 1: calculate  τ 12  and  τ 21

τ 12 = b 12 R T az = 500.40 cal mol ( 1.9859 cal molK )( T az +273.15 K ) = 251.98 ( T az +273.15 )

τ 21 = b 21 R T az = 1636.57 cal mol ( 1.9859 cal molK )( T az +273.15 K ) = 824.095 ( T az +273.15 )

Step 2: calculate  G 12  and  G 21

G 12 =exp( α τ 12 )=exp( 0.5081× 251.98 ( T az +273.15 ) )=exp( 128.031 ( T az +273.15 ) )

G 21 =exp( α τ 21 )=exp( 0.5081× 824.095 ( T az +273.15 ) )=exp( 266.29 ( T az +273.15 ) )

Step 3: calculate  γ 12  and  γ 21

ln γ 1 = x 2 2 [ τ 21 ( G 21 x 1 + x 2 G 21 ) 2 + G 12 τ 12 ( x 2 + x 1 G 12 ) 2 ]

ln γ 2 = x 1 2 [ τ 12 ( G 12 x 2 + x 1 G 12 ) 2 + G 21 τ 21 ( x 1 + x 2 G 21 ) 2 ]

Step 4: calculate  x 1 P az = x 1 γ 1 P 1 sat + x 2 γ 2 P 2 sat step 5: calculate  y 1 y 1 = x 1

Now, use the values of x1 and x2 guessed as 0.4 and 0.8, and the values of y1 and y2 guessed as 0.4 and 0.8, respectively. Also, make an initial guess for Taz as Tguess=363.15 K and using iterative method and the condition to stop the iteration as Paz=101.33 kPa, find Taz for the given value of x1

as:

  Taz=87.526Cx1=y1=0.4461

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 13 Solutions

INTRO. TO CHEM.ENG.THERM. W/ ACCESS >IC

Ch. 13 - A binary mixture of mole fraction z1is flashed to...Ch. 13 - Humidity, relating to the quantity of moisture in...Ch. 13 - A concentrated binary solution containing mostly...Ch. 13 - Air, even more than carbon dioxide, is inexpensive...Ch. 13 - Helium-laced gases are used as breathing media for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the system ethyl ethanoate(l)/n-heptane(2) at...Ch. 13 - A liquid mixture of cyclohexanone(1)/phenol(2) for...Ch. 13 - A binary system of species 1 and 2 consists of...Ch. 13 - For the acetone(l)/methanol(2) system, a vapor...Ch. 13 - The following is a rule of thumb: For a binary...Ch. 13 - A process stream contains light species 1 and...Ch. 13 - If a system exhibits VLE, at least one of the...Ch. 13 - Flash calculations are simpler for binary systems...Ch. 13 - Prob. 13.25PCh. 13 - (a) A feed containing equimolar amounts of...Ch. 13 - A binary mixture of benzene(1) and toluene(2) is...Ch. 13 - Ten (10) kmolhr-1 of hydrogen sulfide gas is...Ch. 13 - Physiological studies show the neutral comfort...Ch. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - If Eq. (13.24) is valid for isothermal VLE in a...Ch. 13 - Prob. 13.34PCh. 13 - The excess Gibbs energy for binary systems...Ch. 13 - For the ethanol(l )/chloroform(2) system at 50°C,...Ch. 13 - VLE data for methyl tert-butyl...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Following are VLE data for the system...Ch. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.45PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Problems 13.43 through 13.54 require parameter...Ch. 13 - Prob. 13.52PCh. 13 - The following expressions have been reported for...Ch. 13 - Possible correlating equations for In 1 in a...Ch. 13 - Prob. 13.57PCh. 13 - Binary VLE data are commonly measured at constant...Ch. 13 - Consider the following model for GE/RT of a binary...Ch. 13 - A breathalyzer measures volume-% ethanol in gases...Ch. 13 - Table 13.10 gives values of parameters for the...Ch. 13 - Prob. 13.62PCh. 13 - A single P-x1- y1data point is available for a...Ch. 13 - A single P- x1, data point is available for a...Ch. 13 - The excess Gibbs energy for the system...Ch. 13 - Prob. 13.66PCh. 13 - A system formed of methane(l) and a light oil(2)...Ch. 13 - Use Eq. (13.13) to reduce one of the following...Ch. 13 - For one of the following substances, determine...Ch. 13 - Departures from Raoult's law are primarily from...Ch. 13 - The relative volatility a12is commonly used in...Ch. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The