bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 17P
To determine

Find the amount of coal (in kg) required for generating for each year.

Expert Solution & Answer
Check Mark

Answer to Problem 17P

The amount of coal (in kg) required for generating electricity for each year are calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Refer to problem 13-17 accompanying table in the textbook, the average efficiency of the power plants is 35%.

The heating value of the coal is 7.5MJkg.

Formula used:

Formula to calculate the power plant efficiency is,

Powerplanteffeicency=EnergygeneratedEnergyinputfromfuel

Rearrange the equation,

Energyinputfromfuel=Energygeneratedpowerplanteffeicency (1)

Convert kWh to MJ,

1kWh=3.6MJ (2)

Formula to calculate the amount of coal required for generating one year is,

amountofcoalrequired=EnergyinputfromfuelHeatingvalueofthecoal (3)

Calculation:

Find the energy input from the fuel in each year:

Substitute 1161.562×109kWh for energy generated and 0.35 (35%) for power plant efficiency in equation (1) to find energy input from the fuel in 1980.

Energyinputfromfuel=1161.562×109kWh0.35=3.318748571×1012kWhEnergyinputfromfuel3318.748571×109kWh

Substitute 1594.011×109kWh for energy generated and 0.35 (35%) for power plant efficiency in equation (1) to find energy input from the fuel in 1990.

Energyinputfromfuel=1594.011×109kWh0.35=4.554317143×1012kWhEnergyinputfromfuel4554.317143×109kWh

Substitute 1966.265×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2000.

Energyinputfromfuel=1966.265×109kWh0.35=5.6179×1012kWhEnergyinputfromfuel5617.9×109kWh

Substitute 2040.913×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2005.

Energyinputfromfuel=2040.913×109kWh0.35=5.8318×1012kWhEnergyinputfromfuel5831.18×109kWh

Substitute 2217.555×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2010.

Energyinputfromfuel=2217.555×109kWh0.35=6.335871429×1012kWhEnergyinputfromfuel6335.871429×109kWh

Substitute 2504.786×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2020.

Energyinputfromfuel=2504.786×109kWh0.35=7.156531429×1012kWhEnergyinputfromfuel7156.531429×109kWh

Substitute 3380.674×109kWh for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from the fuel in 2030.

Energyinputfromfuel=3380.674×109kWh0.35=9.65906857×1012kWhEnergyinputfromfuel9659.06857×109kWh

Now convert all the values from kWh to MJ:

Substitute 3318.74857×109kWh for 1kWh in equation (2) for the year 1980,

3318.748571×109kWh=(3.6MJ)×(3318.748571×109)[1kWh=3.6MJ]=1.194749486×1013MJ=11947.49486×109MJ

Substitute 4554.317143×109kWh for 1kWh in equation (2) for the year 1990,

4554.317143×109kWh=3.6MJ×4554.317143×109 [1kWh=3.6MJ]=1.639554171×1013MJ=16395.54171×109MJ

Substitute 5617.9×109kWh for 1kWh in equation (2) for the year 2000,

5617.9×109kWh=(3.6MJ)(5617.9×109)                     [1kWh=3.6MJ]=2.022444×1013MJ=20224.44×109MJ

Substitute 5831.18×109kWh for 1kWh in equation (2) for the year 2005,

5831.18×109kWh=(3.6MJ)(5831.18×109)              [1kWh=3.6MJ]=2.0992248×1013MJ=20992.248×109MJ

Substitute 6335.871429×109kWh for 1kWh in equation (2) for the year 2010,

6335.871429×109kWh=(3.6MJ)(6335.871429×109)[1kWh=3.6MJ]=2.280913714×1013MJ=22809.13714×109MJ

Substitute 7156.531429×109kWh for 1kWh in equation (2) for the year 2020,

7156.531429×109kWh=(3.6MJ)(7156.531429×109)[1kWh=3.6MJ]=2.576351314×1013MJ=25763.51314×109MJ

Substitute 9659.068571×109kWh for 1kWh in equation (2) for the year 2030,

Bundle: Engineering Fundamentals: An Introduction To Engineering, Loose-leaf Version, 6th + Webassign, Single-term Printed Access Card, Chapter 13, Problem 17P

Now find the amount of coal required in every year:

Substitute 11947.49486×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 1980,

amountofcoalrequired=11947.49486×109MJ7.5MJkg=1.593×1012kg1.59×1012kg

Substitute 16395.54171×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 1990,

amountofcoalrequired=16395.54171×109MJ7.5MJkg=2.18607×1012kg2.19×1012kg

Substitute 20224.44×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2000,

amountofcoalrequired=20224.44×109MJ7.5MJkg=2.696592×1012kg2.7×1012kg

Substitute 20992.248×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2005,

amountofcoalrequired=20992.248×109MJ7.5MJkg=2.79896×1012kg2.8×1012kg

Substitute 22809.13714×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2010,

amountofcoalrequired=22809.13714×109MJ7.5MJkg=3.04122×1012kg3.04×1012kg

Substitute 25763.51314×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2020,

amountofcoalrequired=25763.51314×109MJ7.5MJkg=3.43514×1012kg3.44×1012kg

Substitute 34772.64686×109MJ for energy input from fuel and 7.5MJkg for heating value of the coal in equation (3) to find amount of coal is required in 2030,

amountofcoalrequired=34772.64686×109MJ7.5MJkg=4.63635×1012kg4.64×1012kg

Therefore, the energy input for all years for Coal, in kWh and MJ along with coal required to produce 35% of efficiency is shown in Table 1 (with approximately rounded values).

Table 1

Energy Produced (10^9 kWh)Energy(considering efficiency) 109 kWhEnergy (considering efficiency) 109 MJAmount of coal needed in kg
1161.5623318.74857111947.494861.59E+12
1594.0114554.31714316395.541712.19E+12
1966.2655617.920224.442.70E+12
2040.9135831.1820992.2482.80E+12
2217.5556335.87142922809.137143.04E+12
2504.7867156.53142925763.513143.44E+12
3380.6749569.06857134772.646864.64E+12

Conclusion:

Hence, the amount of coal (in kg) required for generating electricity for each year has been calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a 400-MW, 32 percent efficient coal-fired power plant that uses cooling water withdrawn from a nearby river (with an upstream flow of 10-m3/s and temperature 20 °C) to take care of waste heat. The heat content of the coal is 8,000 Btu/lb, the carbon content is 60% by mass, and the sulfur content is 2% by mass. How much electricity (in kWh/yr) would the plant produce each year? How many pounds per hour of coal would need to be burned at the plant? Estimate the annual carbon emissions from the plant (in metric tons C/year). If the cooling water is only allowed to rise in temperature by 10 °C, what flow rate (in m3/s) from the stream would be required?  What would be the river temperature if all the waste heat was transferred to the river water assuming no heat losses during transfer?  Estimate the hourly SO2 emissions (in kg/h) from the plant assuming that all the sulfur is oxidized to SO2 during combustion.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning